Nanostructured Ionic Liquid Containing Block Copolymer Electrolytes for Solid-State Supercapacitors

被引:0
|
作者
Varghese, Anto Puthussery [1 ,2 ,3 ]
Zanata, Daniela de Morais [3 ,4 ]
Lashkari, Sima [3 ]
Gonzalez, Miryam Criado [3 ]
Forsyth, Maria [1 ,2 ,5 ]
Howlett, Patrick C. [1 ,2 ]
Rider, Andrew N. [6 ]
Goujon, Nicolas [3 ,4 ]
Villaluenga, Irune [3 ,5 ]
机构
[1] Deakin Univ, Inst Frontier Mat IFM, 221 Burwood Highway, Geelong, Vic 3125, Australia
[2] Deakin Univ, ARC Ind Training Transformat Ctr Future Energy Tec, 221 Burwood Highway, Geelong, Vic 3125, Australia
[3] Univ Basque Country UPV EHU, Fac Chem, Appl Chem Dept, POLYMAT, Donostia San Sebastian, Spain
[4] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Alternat Energies CIC EnergiGUNE, Parque Tecnol Alava,Albert Einstein 48, Vitoria 01510, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
[6] Def Sci & Technol Grp, Multifunct Mat Grp, Port Melbourne 3207, Australia
基金
澳大利亚研究理事会;
关键词
Solid-state electrolyte; Block copolymer; Ionic liquids; Supercapacitor; PERFORMANCE; ELECTRODES; GEL;
D O I
10.1002/batt.202400591
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We report on the physiochemical behaviour of membranes based on three different polystyrene-b-poly(ethylene oxide)-b-polystyrene (PS-b-PEO-b-PS) block copolymers and an ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI)) and their use as solid-state electrolytes in supercapacitors. The nanostructured block copolymers form free standing membranes at high ionic liquid uptake with conductivities above 1 mS/cm at 25 degrees C, keeping ordered morphologies. We used small angle X-ray scattering (SAXS) to propose the correlation between domain spacing, the copolymer chain length (N) and the interaction parameter (chi eff) in the block copolymers. We explored the potential of the electrolytes in two high voltage (3.0 V) device configurations, first using carbon nanotube (CNT) electrodes, with excellent electrical conductivity and high-rate capability exhibiting a power density of 5.7 KW/kg at 4 A/g, while devices based on high surface area activated carbon exhibited high energy density of 20.7 Wh/kg at 4 A/g. Overall, both devices deliver superior specific energy and power densities than that of commercial state-of-the-art supercapacitors, based on liquid electrolyte. Additionally, the CNT|Solid-state|CNT device displays higher power density compared to the AC|Solid-state|AC device, highlighting its better suitability for high power applications, while the AC|Solid-state|AC device, is better suited for energy density applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Synthesis and self-assembly of bottlebrush block copolymer electrolytes for solid-state supercapacitors
    Kim, Bomi
    Ko, Yeongnam
    Mun, Woo Jin
    Kim, Ki Chul
    Kim, Jong Hak
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [2] Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors
    Wang, Po-Hsin
    Wang, Tzong-Liu
    Lin, Wen-Churng
    Lin, Hung -Yin
    Lee, Mei-Hwa
    Yang, Chien-Hsin
    NANOMATERIALS, 2018, 8 (04):
  • [3] Solid-state supercapacitors using ionic liquid dispersed Li+-NASICONs as electrolytes
    Kaur, Gurpreet
    Sivasubramanian, Seshadri Chandrasekara
    Dalvi, Anshuman
    ELECTROCHIMICA ACTA, 2022, 434
  • [4] A Super-Ionic Solid-State Block Copolymer Electrolyte
    Krause, Daniel T.
    Foerster, Beate
    Dulle, Martin
    Kraemer, Susanna
    Boeckmann, Steffen
    Moenich, Caroline
    Hansen, Michael Ryan
    Schoenhoff, Monika
    Siozios, Vassilios
    Gruenebaum, Mariano
    Winter, Martin
    Foerster, Stephan
    Wiemhoefer, Hans-Dieter
    SMALL, 2024, 20 (49)
  • [5] Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries
    Soo, PP
    Huang, BY
    Jang, YI
    Chiang, YM
    Sadoway, DR
    Mayes, AM
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (01) : 32 - 37
  • [6] Ionic Conductivity of Nanostructured Block Copolymer/Ionic Liquid Membranes
    Hoarfrost, Megan L.
    Segalman, Rachel A.
    MACROMOLECULES, 2011, 44 (13) : 5281 - 5288
  • [7] Polymerized Ionic Liquid Block Copolymer Electrolytes for All-Solid-State Lithium-Metal Batteries
    Mendes, Tiago C.
    Goujon, Nicolas
    Malic, Nino
    Postma, Almar
    Chiefari, John
    Zhu, Haijin
    Howlett, Patrick C.
    Forsyth, Maria
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (07)
  • [8] Proton conducting ionic liquid electrolytes for liquid and solid-state electrochemical pseudocapacitors
    Ketabi, Sanaz
    Decker, Blair
    Lian, Keryn
    SOLID STATE IONICS, 2016, 298 : 73 - 79
  • [9] Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors
    Lu, Wen
    Henry, Kent
    Turchi, Craig
    Pellegrino, John
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (05) : A361 - A367
  • [10] SOLID-STATE IONIC BEHAVIOR OF LIQUID ELECTROLYTES IMMOBILIZED IN A MICROPOROUS MEMBRANE
    ITOH, T
    KOSEKI, K
    MUKAIDA, K
    KOHNO, K
    CAO, QJ
    YAMAMOTO, O
    SOLID STATE IONICS, 1990, 40-1 : 620 - 623