Rationalizing protein-ligand interactions via the effective fragment potential method and structural data from classical molecular dynamics

被引:0
|
作者
Urbina, Andres S. [1 ]
Slipchenko, Lyudmila V. [1 ]
机构
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
R-7 DISPERSION INTERACTION; FREE-ENERGY CALCULATIONS; DRUG DISCOVERY; PERTURBATION-THEORY; DAMPING FUNCTIONS; ATOMIC CHARGES; BINDING MODES; ACCURATE; PREDICTION; DOCKING;
D O I
10.1063/5.0247878
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Effective Fragment Potential (EFP) method, a polarizable quantum mechanics-based force field for describing non-covalent interactions, is utilized to calculate protein-ligand interactions in seven inactive cyclin-dependent kinase 2-ligand complexes, employing structural data from molecular dynamics simulations to assess dynamic and solvent effects. Our results reveal high correlations between experimental binding affinities and EFP interaction energies across all the structural data considered. Using representative structures found by clustering analysis and excluding water molecules yields the highest correlation (R-2 of 0.95). In addition, the EFP pairwise interaction energy decomposition analysis identifies critical interactions between the ligands and protein residues and provides insight into their nature. Overall, this study indicates the potential applications of the EFP method in structure-based drug design.
引用
收藏
页数:11
相关论文
共 19 条
  • [1] Using molecular docking and molecular dynamics to investigate protein-ligand interactions
    Morris, Connor J.
    Della Corte, Dennis
    MODERN PHYSICS LETTERS B, 2021, 35 (08):
  • [2] Protein-specific force field derived from the fragment molecular orbital method can improve protein-ligand binding interactions
    Chang, Le
    Ishikawa, Takeshi
    Kuwata, Kazuo
    Takada, Shoji
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2013, 34 (14) : 1251 - 1257
  • [3] Free Energy Calculations Using the Movable Type Method with Molecular Dynamics Driven Protein-Ligand Sampling
    Liu, Wenlang
    Liu, Zhenhao
    Liu, Hao
    Westerhoff, Lance M.
    Zheng, Zheng
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (22) : 5645 - 5665
  • [4] Parameterization of an effective potential for protein-ligand binding from host-guest affinity data
    Wickstrom, Lauren
    Deng, Nanjie
    He, Peng
    Mentes, Ahmet
    Nguyen, Crystal
    Gilson, Michael K.
    Kurtzman, Tom
    Gallicchio, Emilio
    Levy, Ronald M.
    JOURNAL OF MOLECULAR RECOGNITION, 2016, 29 (01) : 10 - 21
  • [5] A Self-Adaptive Steered Molecular Dynamics Method Based on Minimization of Stretching Force Reveals the Binding Affinity of Protein-Ligand Complexes
    Gu, Junfeng
    Li, Hongxia
    Wang, Xicheng
    MOLECULES, 2015, 20 (10) : 19236 - 19251
  • [6] A High-Quality Data Set of Protein-Ligand Binding Interactions Via Comparative Complex Structure Modeling
    Li, Xuelian
    Shen, Cheng
    Zhu, Hui
    Yang, Yujian
    Wang, Qing
    Yang, Jincai
    Huang, Niu
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (07) : 2454 - 2466
  • [7] Modulation of protein-ligand interactions in the presence of ZIF-8: Spectroscopy and molecular dynamics simulation
    Duan, Xinyue
    Liu, Wei
    Liang, Jiaqi
    Jing, Tingyu
    Liu, Yu
    Wang, Xiao
    Liu, Bin
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 312
  • [8] PL-PatchSurfer: A Novel Molecular Local Surface-Based Method for Exploring Protein-Ligand Interactions
    Hu, Bingjie
    Zhu, Xiaolei
    Monroe, Lyman
    Bures, Mark G.
    Kihara, Daisuke
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (09): : 15122 - 15145
  • [9] Molecular Recognition in a Diverse Set of Protein-Ligand Interactions Studied with Molecular Dynamics Simulations and End-Point Free Energy Calculations
    Wang, Bo
    Li, Liwei
    Hurley, Thomas D.
    Meroueh, Samy O.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (10) : 2659 - 2670
  • [10] Convex-PL: a novel knowledge-based potential for protein-ligand interactions deduced from structural databases using convex optimization
    Kadukova, Maria
    Grudinin, Sergei
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2017, 31 (10) : 943 - 958