Predicting Mesoscopic Larmor Frequency Shifts in White Matter With Diffusion MRI-A Monte Carlo Study in Axonal Phantoms

被引:0
作者
Sandgaard, Anders Dyhr [1 ]
Jespersen, Sune Norhoj [1 ,2 ]
机构
[1] Aarhus Univ, Ctr Functionally Integrat Neurosci, Dept Clin Med, Aarhus, Denmark
[2] Aarhus Univ, Dept Phys & Astron, Aarhus, Denmark
关键词
diffusion; Larmor frequency; magnetic susceptibility; microstructure; Monte Carlo; transverse relaxation; HIGH-FIELD MRI; MYELIN WATER; IN-VIVO; SIMULATION; IRON; RELAXATION; SIGNAL; ENVIRONMENT; MODEL;
D O I
10.1002/nbm.70004
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Magnetic susceptibility MRI offers potential insights into the chemical composition and microstructural organization of tissue. However, estimating magnetic susceptibility in white matter is challenging due to anisotropic subvoxel Larmor frequency shifts caused by axonal microstructure relative to the B0 field orientation. Recent biophysical models have analytically described how axonal microstructure influences the Larmor frequency shifts, relating these shifts to a mesoscopically averaged magnetic field that depends on the axons' fiber orientation distribution function (fODF), typically estimated using diffusion MRI. This study is aimed at validating the use of MRI to estimate mesoscopic magnetic fields and determining whether diffusion MRI can faithfully estimate the orientation dependence of the Larmor frequency shift in realistic axonal microstructure. To achieve this, we developed a framework for performing Monte Carlo simulations of MRI signals in mesoscopically sized white matter axon substrates segmented with electron microscopy. Our simulations demonstrated that with careful experimental design, it is feasible to estimate mesoscopic magnetic fields. Additionally, the fODF estimated by the standard model of diffusion in white matter could predict the orientation dependence of the mesoscopic Larmor frequency shift. We also found that incorporating the intra-axonal axial kurtosis into the standard model could explain a significant amount of signal variance, thereby improving the estimation of the Larmor frequency shift. This factor should not be neglected when fitting the standard model.
引用
收藏
页数:17
相关论文
共 89 条
[21]   Novel White Matter Tract Integrity Metrics Sensitive to Alzheimer Disease Progression [J].
Fieremans, E. ;
Benitez, A. ;
Jensen, J. H. ;
Falangola, M. F. ;
Tabesh, A. ;
Deardorff, R. L. ;
Spampinato, M. V. S. ;
Babb, J. S. ;
Novikov, D. S. ;
Ferris, S. H. ;
Helpern, J. A. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (11) :2105-2112
[22]  
Fisher N. I., 1987, Statistical Analysis of Spherical Data, DOI [10.1017/CBO9780511623059, DOI 10.1017/CBO9780511623059]
[23]  
Frank L R, 2006, Conf Proc IEEE Eng Med Biol Soc, V2006, P2243
[24]   Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast [J].
Fukunaga, Masaki ;
Li, Tie-Qiang ;
van Gelderen, Peter ;
de Zwart, Jacco A. ;
Shmueli, Karin ;
Yao, Bing ;
Lee, Jongho ;
Maric, Dragan ;
Aronova, Maria A. ;
Zhang, Guofeng ;
Leapman, Richard D. ;
Schenck, John F. ;
Merkle, Hellmut ;
Duyn, Jeff H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (08) :3834-3839
[25]   MEDUSA: A GPU-based tool to create realistic phantoms of the brain microstructure using tiny spheres [J].
Ginsburger, Kevin ;
Matuschke, Felix ;
Poupon, Fabrice ;
Mangin, Jean-Francois ;
Axer, Markus ;
Poupon, Cyril .
NEUROIMAGE, 2019, 193 :10-24
[26]   Improving the Realism of White Matter Numerical Phantoms: A Step toward a Better Understanding of the Influence of Structural Disorders in Diffusion MRI [J].
Ginsburger, Kevin ;
Poupon, Fabrice ;
Beaujoin, Justine ;
Estournet, Delphine ;
Matuschke, Felix ;
Mangin, Jean-Francois ;
Axer, Markus ;
Poupon, Cyril .
FRONTIERS IN PHYSICS, 2018, 6
[27]   High angular resolution susceptibility imaging and estimation of fiber orientation distribution functions in primate brain [J].
Gkotsoulias, Dimitrios G. ;
Mueller, Roland ;
Jaeger, Carsten ;
Schlumm, Torsten ;
Mildner, Toralf ;
Eichner, Cornelius ;
Pampel, Andre ;
Jaffe, Jennifer ;
Graessle, Tobias ;
Alsleben, Niklas ;
Chen, Jingjia ;
Crockford, Catherine ;
Wittig, Roman ;
Liu, Chunlei ;
Moeller, Harald E. .
NEUROIMAGE, 2023, 276
[28]   NMR diffusion simulation based on conditional random walk [J].
Gudbjartsson, H ;
Patz, S .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1995, 14 (04) :636-642
[29]   Simulations on the influence of myelin water in diffusion-weighted imaging [J].
Harkins, K. D. ;
Does, M. D. .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (13) :4729-4745
[30]   Biophysical mechanisms of phase contrast in gradient echo MRI [J].
He, Xiang ;
Yablonskiy, Dmitriy A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (32) :13558-13563