Algebraic method for multisensor data fusion

被引:0
作者
Chen, Xiangbing [1 ,2 ]
Chen, Chen [3 ]
Lu, Xiaowen [1 ]
机构
[1] Kashi Univ, Sch Math & Stat, Kashi, Xinjiang, Peoples R China
[2] Sichuan Univ, Div Math, Jinjiang Coll, Meishan, Sichuan, Peoples R China
[3] Civil Aviat Flight Univ China, Sch Sci, Guanghan, Sichuan, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 09期
基金
中国国家自然科学基金;
关键词
STATE ESTIMATION; DISTANCE; ALGORITHM; GEOMETRY; SYSTEMS; BOUNDS;
D O I
10.1371/journal.pone.0307587
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this contribution, we use Gaussian posterior probability densities to characterize local estimates from distributed sensors, and assume that they all belong to the Riemannian manifold of Gaussian distributions. Our starting point is to introduce a proper Lie algebraic structure for the Gaussian submanifold with a fixed mean vector, and then the average dissimilarity between the fused density and local posterior densities can be measured by the norm of a Lie algebraic vector. Under Gaussian assumptions, a geodesic projection based algebraic fusion method is proposed to achieve the fused density by taking the norm as the loss. It provides a robust fixed point iterative algorithm for the mean fusion with theoretical convergence, and gives an analytical form for the fused covariance matrix. The effectiveness of the proposed fusion method is illustrated by numerical examples.
引用
收藏
页数:18
相关论文
共 37 条
  • [21] Distributed multi-sensor multi-view fusion based on generalized covariance intersection
    Li, Guchong
    Battistelli, Giorgio
    Yi, Wei
    Kong, Lingjiang
    [J]. SIGNAL PROCESSING, 2020, 166
  • [22] Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to Image Classification
    Li, Peihua
    Wang, Qilong
    Zeng, Hui
    Zhang, Lei
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (04) : 803 - 817
  • [23] Optimal linear estimation fusion - Part I: Unified fusion rules
    Li, XR
    Zhu, YM
    Wang, J
    Han, CZ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) : 2192 - 2208
  • [24] Liggins M.E., 2009, Handbook of Multisensor Data Fusion Theory and Practice, Vsecond
  • [25] The covariance intersection fusion estimation algorithm weighted by diagonal matrix based on genetic simulated annealing algorithm and machine learning
    Liu, Jingang
    Hao, Gang
    [J]. ASIAN JOURNAL OF CONTROL, 2023, 25 (02) : 1448 - 1463
  • [26] On the computation of Wasserstein barycenters
    Puccetti, Giovanni
    Rueschendorf, Ludger
    Vanduffel, Steven
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 176
  • [27] Minimax Robust Optimal Estimation Fusion in Distributed Multisensor Systems With Uncertainties
    Qu, Xiaomei
    Zhou, Jie
    Song, Enbin
    Zhu, Yunmin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (09) : 811 - 814
  • [28] Minimum Covariance Bounds for the Fusion under Unknown Correlations
    Reinhardt, Marc
    Noack, Benjamin
    Arambel, Pablo O.
    Hanebeck, Uwe D.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (09) : 1210 - 1214
  • [29] Intrinsic Losses Based on Information Geometry and Their Applications
    Rong, Yao
    Tang, Mengjiao
    Zhou, Jie
    [J]. ENTROPY, 2017, 19 (08)
  • [30] Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources
    Salcedo-Sanz, S.
    Ghamisi, P.
    Piles, M.
    Werner, M.
    Cuadra, L.
    Moreno-Martinez, A.
    Izquierdo-Verdiguier, E.
    Munoz-Mari, J.
    Mosavi, Amirhosein
    Camps-Valls, G.
    [J]. INFORMATION FUSION, 2020, 63 : 256 - 272