A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint

被引:0
|
作者
Zhou, Jianghong [1 ]
Qin, Yi [1 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss Adv Equipment, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Degradation; Predictive models; Computational modeling; Convolutional neural networks; Accuracy; Monitoring; Data models; Vectors; Maintenance; Attention mechanism; continuous learning (CL); deep learning; remaining useful life (RUL); rotating machinery; UNIT;
D O I
10.1109/TNNLS.2024.3462723
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rotating machinery is continuously monitored in practical application. However, the historical life-cycle data cannot be always preserved due to the limited storage resource; meanwhile, the on-site computing platform cannot process a large number of monitoring samples. It brings a great challenge for the remaining useful life (RUL) prediction. Thus, continuous learning (CL) is introduced into RUL prediction model for achieving its knowledge accumulation and dynamic update. To improve the performance of continuous RUL prediction, this article presents a new RUL prediction methodology with a multistage attention convolutional neural network (MSACNN) and knowledge weight constraint (KWC). First, an improved multihead full-channel sight self-attention (MFCSSA) mechanism is proposed to capture the global degradation information across all channels. MSACNN is then constructed by embedding MFCSSA, squeeze-and-excitation (SE) mechanism, and convolutional block attention module (CBAM) into different stages of feature extraction, which enables it to capture the global degradation information and refine the feature representations progressively. The KWC mechanism based on the importance of weight parameters and gradient information is proposed and integrated into MSACNN to achieve the continuous RUL prediction task. The proposed KWC can effectively alleviate catastrophic forgetting in CL. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that MSACNN has a higher accuracy than the existing prediction methods. Moreover, the KWC mechanism performs better than typical CL methods in retaining the previously learned knowledge while acquiring the new task knowledge. Therefore, the proposed methodology can be better applied to the continuous RUL prediction tasks than the advanced methods of the same kind.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction
    Luo, Jiahang
    Zhang, Xu
    APPLIED INTELLIGENCE, 2022, 52 (01) : 1076 - 1091
  • [42] Remaining Useful Life Prediction Based on ConvGRU-Attention Method
    Zhao Z.
    Li Q.
    Li C.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2022, 42 (03): : 572 - 579
  • [43] Multibranch Horizontal Augmentation Network for Continuous Remaining Useful Life Prediction
    Zhou, Jianghong
    Luo, Jun
    Pu, Huayan
    Qin, Yi
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (03): : 2237 - 2249
  • [44] Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction
    Jiahang Luo
    Xu Zhang
    Applied Intelligence, 2022, 52 : 1076 - 1091
  • [45] Remaining Useful Life Prediction of Bearings Based on Multi-head Self-attention Mechanism, Multi-scale Temporal Convolutional Network and Convolutional Neural Network
    Wei, Hao
    Gu, Yu
    Zhang, Qinghua
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3027 - 3032
  • [46] Spatial attention-based convolutional transformer for bearing remaining useful life prediction
    Chen, Chong
    Wang, Tao
    Liu, Ying
    Cheng, Lianglun
    Qin, Jian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [47] Remaining Useful Life Estimation Based on a New Convolutional and Recurrent Neural Network
    Zhang, Xinyun
    Dong, Yan
    Wen, Long
    Lu, Fang
    Li, Wei
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 317 - 322
  • [48] Uncertainty Quantification of Bearing Remaining Useful Life Based on Convolutional Neural Network
    Wang, Huanjie
    Bai, Xiwei
    Tan, Jie
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2893 - 2900
  • [49] A new ensemble residual convolutional neural network for remaining useful life estimation
    Wen, Long
    Dong, Yan
    Gao, Liang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (02) : 862 - 880
  • [50] Temporal Knowledge Graph Informer Network for Remaining Useful Life Prediction
    Zhang, Yuanming
    Zhou, Weiyue
    Huang, Jiacheng
    Jin, Xiaohang
    Xiao, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72