A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint

被引:0
|
作者
Zhou, Jianghong [1 ]
Qin, Yi [1 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss Adv Equipment, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Degradation; Predictive models; Computational modeling; Convolutional neural networks; Accuracy; Monitoring; Data models; Vectors; Maintenance; Attention mechanism; continuous learning (CL); deep learning; remaining useful life (RUL); rotating machinery; UNIT;
D O I
10.1109/TNNLS.2024.3462723
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rotating machinery is continuously monitored in practical application. However, the historical life-cycle data cannot be always preserved due to the limited storage resource; meanwhile, the on-site computing platform cannot process a large number of monitoring samples. It brings a great challenge for the remaining useful life (RUL) prediction. Thus, continuous learning (CL) is introduced into RUL prediction model for achieving its knowledge accumulation and dynamic update. To improve the performance of continuous RUL prediction, this article presents a new RUL prediction methodology with a multistage attention convolutional neural network (MSACNN) and knowledge weight constraint (KWC). First, an improved multihead full-channel sight self-attention (MFCSSA) mechanism is proposed to capture the global degradation information across all channels. MSACNN is then constructed by embedding MFCSSA, squeeze-and-excitation (SE) mechanism, and convolutional block attention module (CBAM) into different stages of feature extraction, which enables it to capture the global degradation information and refine the feature representations progressively. The KWC mechanism based on the importance of weight parameters and gradient information is proposed and integrated into MSACNN to achieve the continuous RUL prediction task. The proposed KWC can effectively alleviate catastrophic forgetting in CL. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that MSACNN has a higher accuracy than the existing prediction methods. Moreover, the KWC mechanism performs better than typical CL methods in retaining the previously learned knowledge while acquiring the new task knowledge. Therefore, the proposed methodology can be better applied to the continuous RUL prediction tasks than the advanced methods of the same kind.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Remaining useful life prediction based on an integrated neural network
    Zhang Y.-F.
    Lu Z.-Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (10): : 1372 - 1380
  • [32] Dilated Convolution Neural Network for Remaining Useful Life Prediction
    Xu, Xin
    Wu, Qianhui
    Li, Xiu
    Huang, Biqing
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2020, 20 (02)
  • [33] Dual residual attention network for remaining useful life prediction of bearings
    Jiang, Guoqian
    Zhou, Wenda
    Chen, Qi
    He, Qun
    Xie, Ping
    MEASUREMENT, 2022, 199
  • [34] Remaining Useful Life Prediction and Uncertainty Quantification for Bearings Based on Cascaded Multiscale Convolutional Neural Network
    He, Jialong
    Wu, Chenchen
    Luo, Wei
    Qian, Chenhui
    Liu, Shaoyang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13
  • [35] Remaining useful life prediction for rolling bearings based on similarity feature fusion and convolutional neural network
    Lei Nie
    Lvfan Zhang
    Shiyi Xu
    Wentao Cai
    Haoming Yang
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [36] A Two-Stage Transfer Regression Convolutional Neural Network for Bearing Remaining Useful Life Prediction
    Li, Xianling
    Zhang, Kai
    Li, Weijun
    Feng, Yi
    Liu, Ruonan
    MACHINES, 2022, 10 (05)
  • [37] Remaining useful life prediction for rolling bearings based on similarity feature fusion and convolutional neural network
    Nie, Lei
    Zhang, Lvfan
    Xu, Shiyi
    Cai, Wentao
    Yang, Haoming
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (08)
  • [38] Channel attention & temporal attention based temporal convolutional network: A dual attention framework for remaining useful life prediction of the aircraft engines
    Lin, Lin
    Wu, Jinlei
    Fu, Song
    Zhang, Sihao
    Tong, Changsheng
    Zu, Lizheng
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [39] Path Graph Attention Network-based Bearing Remaining Useful Life Prediction Method
    Yang C.
    Liu J.
    Zhou K.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 195 - 201
  • [40] Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction
    Li, Tianfu
    Zhao, Zhibin
    Sun, Chuang
    Yan, Ruqiang
    Chen, Xuefeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 215