A Continuous Remaining Useful Life Prediction Method With Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint

被引:1
|
作者
Zhou, Jianghong [1 ]
Qin, Yi [1 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss Adv Equipment, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Degradation; Predictive models; Computational modeling; Convolutional neural networks; Accuracy; Monitoring; Data models; Vectors; Maintenance; Attention mechanism; continuous learning (CL); deep learning; remaining useful life (RUL); rotating machinery; UNIT;
D O I
10.1109/TNNLS.2024.3462723
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rotating machinery is continuously monitored in practical application. However, the historical life-cycle data cannot be always preserved due to the limited storage resource; meanwhile, the on-site computing platform cannot process a large number of monitoring samples. It brings a great challenge for the remaining useful life (RUL) prediction. Thus, continuous learning (CL) is introduced into RUL prediction model for achieving its knowledge accumulation and dynamic update. To improve the performance of continuous RUL prediction, this article presents a new RUL prediction methodology with a multistage attention convolutional neural network (MSACNN) and knowledge weight constraint (KWC). First, an improved multihead full-channel sight self-attention (MFCSSA) mechanism is proposed to capture the global degradation information across all channels. MSACNN is then constructed by embedding MFCSSA, squeeze-and-excitation (SE) mechanism, and convolutional block attention module (CBAM) into different stages of feature extraction, which enables it to capture the global degradation information and refine the feature representations progressively. The KWC mechanism based on the importance of weight parameters and gradient information is proposed and integrated into MSACNN to achieve the continuous RUL prediction task. The proposed KWC can effectively alleviate catastrophic forgetting in CL. Finally, the experimental results on the life-cycle bearing and gear datasets demonstrate that MSACNN has a higher accuracy than the existing prediction methods. Moreover, the KWC mechanism performs better than typical CL methods in retaining the previously learned knowledge while acquiring the new task knowledge. Therefore, the proposed methodology can be better applied to the continuous RUL prediction tasks than the advanced methods of the same kind.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A novel remaining useful life prediction method based on gated attention mechanism capsule neural network
    Zhao, Chengying
    Huang, Xianzhen
    Li, Yuxiong
    Li, Shangjie
    MEASUREMENT, 2022, 189
  • [32] Remaining Useful Life Prediction Based on a Double-Convolutional Neural Network Architecture
    Yang, Boyuan
    Liu, Ruonan
    Zio, Enrico
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (12) : 9521 - 9530
  • [33] Recurrent convolutional neural network: A new framework for remaining useful life prediction of machinery
    Wang, Biao
    Lei, Yaguo
    Yan, Tao
    Li, Naipeng
    Guo, Liang
    NEUROCOMPUTING, 2020, 379 : 117 - 129
  • [34] Remaining Useful Life Prediction and Uncertainty Quantification for Bearings Based on Cascaded Multiscale Convolutional Neural Network
    He, Jialong
    Wu, Chenchen
    Luo, Wei
    Qian, Chenhui
    Liu, Shaoyang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13
  • [35] Remaining Useful Life Prediction Based on Improved LSTM Hybrid Attention Neural Network
    Xu, Mang
    Bai, Yunyi
    Qian, Pengjiang
    INTELLIGENT COMPUTING METHODOLOGIES, PT III, 2022, 13395 : 709 - 718
  • [36] Convolutional Transformer: An Enhanced Attention Mechanism Architecture for Remaining Useful Life Estimation of Bearings
    Ding, Yifei
    Jia, Minping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [37] Trend attention fully convolutional network for remaining useful life estimation
    Fan, Linchuan
    Chai, Yi
    Chen, Xiaolong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 225
  • [38] Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction
    Jiahang Luo
    Xu Zhang
    Applied Intelligence, 2022, 52 : 1076 - 1091
  • [39] Spatiotemporally Multidifferential Processing Deep Neural Network and its Application to Equipment Remaining Useful Life Prediction
    Xiang, Sheng
    Qin, Yi
    Luo, Jun
    Pu, Huayan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 7230 - 7239
  • [40] A Multisource State Space-Based Tool Remaining Useful Life Prediction Method Considering Multistage Degradation Characteristics
    Feng, Tingting
    Guo, Liang
    Gao, Hongli
    Liu, Xiaohong
    IEEE SENSORS JOURNAL, 2025, 25 (07) : 11216 - 11225