On Frobenius graphs of diameter 3 for finite groups

被引:0
作者
Breuer, T. [1 ]
Hethelyi, L. [2 ]
Horvath, E.
Kuelshammer, B. [3 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Algebra & Zahlentheorie, Pontdriesch 14-16, D-52062 Aachen, Germany
[2] Budapest Univ Technol & Econ, Dept Algebra, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[3] Friedrich Schiller Univ, Inst Math, D-07737 Jena, Germany
关键词
Frobenius graph; Core-free subgroup; Subgroup depth; SUBGROUPS;
D O I
10.1016/j.jalgebra.2024.11.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a subgroup H of a finite group G, the Frobenius graph Gamma(G, H ) records the constituents of the restrictions to H of the irreducible characters of G. We investigate when this graph has diameter 3. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:507 / 529
页数:23
相关论文
共 17 条
  • [1] SIMPLE GROUPS CONTAIN MINIMAL SIMPLE GROUPS
    Barry, Michael J. J.
    Ward, Michael B.
    [J]. PUBLICACIONS MATEMATIQUES, 1997, 41 (02) : 411 - 415
  • [2] Besche H. U., 2023, SmallGrp, the GAP small groups library
  • [3] Breuer T., 2024, CTblLib, the GAP character table library
  • [4] Breuer Thomas, 2024, Zenodo, DOI 10.5281/ZENODO.12731413
  • [5] Burciu S., 2011, Perspectives in Mathematics and Physics, VXV, P17
  • [6] Subgroups of odd depth-a necessary condition
    Burciu, Sebastian
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (04) : 1039 - 1048
  • [7] Burciu S, 2011, INT ELECTRON J ALGEB, V9, P133
  • [8] Curtis R.T., 1985, An ATLAS of Finite Groups
  • [9] Decker Wolfram, 2025, Algorithms and Computation in Mathematics, V32
  • [10] MINIMAL NICHT UBERAUFLOSBARE ENDLICHE GRUPPEN
    DOERK, K
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1966, 91 (03) : 198 - &