A paradigm shift toward active resistive sensing driven by triboelectric nanogenerator

被引:2
作者
Hong, Jianlong [1 ]
Rao, Zhoulyu [2 ,3 ]
Duan, Shengshun [1 ]
Xiang, Shengxin [1 ]
Wei, Xiao [1 ]
Xiao, Yukun [1 ]
Chen, Yuqi [1 ]
Sheng, Hai [1 ,4 ]
Xia, Jun [1 ]
Lei, Wei [1 ]
Yu, Cunjiang [3 ,5 ]
Shi, Qiongfeng [1 ]
Wu, Jun [1 ]
机构
[1] Southeast Univ, Sch Elect Sci & Engn, Joint Int Res Lab Informat Display & Visualizat, Nanjing 210096, Peoples R China
[2] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA USA
[3] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[4] Nanjing Foreign Language Sch, Nanjing 210096, Peoples R China
[5] Univ Illinois, Beckman Inst Adv Sci & Technol, Canc Ctr Illinois, Dept Mech Sci & Engn,Dept Elect & Comp Engn,Dept M, Urbana, IL 61801 USA
基金
中国国家自然科学基金;
关键词
Active sensing; Resistive sensors; Triboelectric nanogenerators (TENG); Self-powered; Multimodal; Wearable;
D O I
10.1016/j.nanoen.2024.110327
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rapid development of diverse wearable sensors and systems in the era of internet of things and metaverse raises a significantly increasing demand for distributed power supplies and power consumption management, which facilitates worldwide research hotspots in the fields of self-powered active sensing and ambient energy harvesting. The past decade has witnessed the thriving of triboelectric nanogenerators (TENGs) as self-powered sensors and energy harvesters in wearable electronics, yet their intrinsic limitations of monomodal kinetic response, discontinuous transient outputs, and environmental susceptibility have inevitably hindered their practical applications. Here, through incorporating the self-generated characteristics of TENGs and the multimodal continuous sensing capabilities of resistive sensors, we propose an active resistive sensing platform to enable a new modality shift toward self-powered, multimodal, continuous, and robust monitoring. A generalized model consisting of arbitrary TENGs and resistive sensors is developed to lay the theoretic foundation for the platform. Various TENG-driven active resistive sensing systems with continuous and multimodal sensing capabilities are implemented and validated for wearable applications. The developed TENG-DARS platform can be also applied beyond wearable sensing scenarios, facilitating a paradigm shift of sensing modality toward selfpowered, multimodal, continuous, and robust monitoring in the era of the Internet of Things and metaverse.
引用
收藏
页数:16
相关论文
共 65 条
[21]   Triboresistive Touch Sensing: Grid-Free Touch-Point Recognition Based on Monolayered Ionic Power Generators [J].
Lee, Younghoon ;
Lim, Sungsoo ;
Song, Won Jun ;
Lee, Sudong ;
Yoon, Sohee John ;
Park, Jae-Man ;
Lee, Min-Gyu ;
Park, Yong-Lae ;
Sun, Jeong-Yun .
ADVANCED MATERIALS, 2022, 34 (19)
[22]   Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel [J].
Li, Chengyu ;
Liu, Di ;
Xu, Chaoqun ;
Wang, Ziming ;
Shu, Sheng ;
Sun, Zhuoran ;
Tang, Wei ;
Wang, Zhong Lin .
NATURE COMMUNICATIONS, 2021, 12 (01)
[23]   A triboelectric nanogenerator powered piezoresistive strain sensing technique insensitive to output variations [J].
Li, Guang ;
Wu, Shuying ;
Sha, Zhao ;
Zhao, Liya ;
Chu, Dewei ;
Wang, Chun H. ;
Peng, Shuhua .
NANO ENERGY, 2023, 108
[24]   A Self-Powered Dual-Type Signal Vector Sensor for Smart Robotics and Automatic Vehicles [J].
Li, Shaoxin ;
Zhao, Zhihao ;
Liu, Di ;
An, Jie ;
Gao, Yikui ;
Zhou, Linglin ;
Li, Yanhong ;
Cui, Shengnan ;
Wang, Jie ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2022, 34 (14)
[25]   Bioinspired robot skin with mechanically gated electron channels for sliding tactile perception [J].
Li, Sheng ;
Chen, Xiaoliang ;
Li, Xiangming ;
Tian, Hongmiao ;
Wang, Chunhui ;
Nie, Bangbang ;
He, Juan ;
Shao, Jinyou .
SCIENCE ADVANCES, 2022, 8 (48)
[26]   Continuous Three-Dimensional Printing of Architected Piezoelectric Sensors in Minutes [J].
Liu, Siying ;
Wang, Wenbo ;
Xu, Weiheng ;
Liu, Luyang ;
Zhang, Wenlong ;
Song, Kenan ;
Chen, Xiangfan .
RESEARCH, 2022, 2022
[27]   Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance [J].
Lu, Yao ;
Zhou, Yi ;
Wang, Wu ;
Hu, Mingyuan ;
Huang, Xiege ;
Mao, Dasha ;
Huang, Shan ;
Xie, Lin ;
Lin, Peijian ;
Jiang, Binbin ;
Zhu, Bin ;
Feng, Jianghe ;
Shi, Jianxu ;
Lou, Qing ;
Huang, Yi ;
Yang, Jianmin ;
Li, Jinhong ;
Li, Guodong ;
He, Jiaqing .
NATURE NANOTECHNOLOGY, 2023, 18 (11) :1281-+
[28]   Technology Roadmap for Flexible Sensors [J].
Luo, Yifei ;
Abidian, Mohammad Reza ;
Ahn, Jong-Hyun ;
Akinwande, Deji ;
Andrews, Anne M. ;
Antonietti, Markus ;
Bao, Zhenan ;
Berggren, Magnus ;
Berkey, Christopher A. ;
Bettinger, Christopher John ;
Chen, Jun ;
Chen, Peng ;
Cheng, Wenlong ;
Cheng, Xu ;
Choi, Seon-Jin ;
Chortos, Alex ;
Dagdeviren, Canan ;
Dauskardt, Reinhold H. ;
Di, Chong-an ;
Dickey, Michael D. ;
Duan, Xiangfeng ;
Facchetti, Antonio ;
Fan, Zhiyong ;
Fang, Yin ;
Feng, Jianyou ;
Feng, Xue ;
Gao, Huajian ;
Gao, Wei ;
Gong, Xiwen ;
Guo, Chuan Fei ;
Guo, Xiaojun ;
Hartel, Martin C. ;
He, Zihan ;
Ho, John S. ;
Hu, Youfan ;
Huang, Qiyao ;
Huang, Yu ;
Huo, Fengwei ;
Hussain, Muhammad M. ;
Javey, Ali ;
Jeong, Unyong ;
Jiang, Chen ;
Jiang, Xingyu ;
Kang, Jiheong ;
Karnaushenko, Daniil ;
Khademhosseini, Ali ;
Kim, Dae-Hyeong ;
Kim, Il-Doo ;
Kireev, Dmitry ;
Kong, Lingxuan .
ACS NANO, 2023, 17 (06) :5211-5295
[29]   Self-powered smart skins for multimodal tactile perception based on triboelectric and hygroelectric working principles [J].
Ma, Xiaoting ;
Kim, Eunjong ;
Zhou, Jiaming ;
Gao, Jingyi ;
Kim, Chuntae ;
Huan, Xiao ;
Kim, Ji Tae ;
Shin, Dong-Myeong .
NANO ENERGY, 2023, 113
[30]   Implantable bioelectronic systems for early detection of kidney transplant rejection [J].
Madhvapathy, Surabhi R. ;
Wang, Jiao-Jing ;
Wang, Heling ;
Patel, Manish ;
Chang, Anthony ;
Zheng, Xin ;
Huang, Yonggang ;
Zhang, Zheng J. ;
Gallon, Lorenzo ;
Rogers, John A. .
SCIENCE, 2023, 381 (6662) :1105-1112