Artificial Intelligence in Oral Cancer: A Comprehensive Scoping Review of Diagnostic and Prognostic Applications

被引:5
作者
Vinay, Vineet [1 ,2 ]
Jodalli, Praveen [1 ]
Chavan, Mahesh S. [3 ]
Buddhikot, Chaitanya. S. [4 ]
Luke, Alexander Maniangat [5 ,6 ]
Ingafou, Mohamed Saleh Hamad [5 ,6 ]
Reda, Rodolfo [7 ]
Pawar, Ajinkya M. [8 ]
Testarelli, Luca [7 ]
机构
[1] Manipal Acad Higher Educ, Manipal Coll Dent Sci Mangalore, Dept Publ Hlth Dent, Manipal 576104, Karnataka, India
[2] Sinhgad Dent Coll & Hosp, Dept Publ Hlth Dent, Pune 411041, Maharashtra, India
[3] Sinhgad Dent Coll & Hosp, Dept Oral Med & Radiol, Pune 411041, Maharashtra, India
[4] Dr DY Patil Vidyapeeth Pune, Dr DY Patil Dent Coll & Hosp Pune, Dept Publ Hlth Dent, Pune 411018, Maharashtra, India
[5] Ajman Univ, Coll Dent, Dept Clin Sci, POB 346, Ajman, U Arab Emirates
[6] Ajman Univ, Ctr Med & Bioallied Hlth Sci Res, POB 346, Ajman, U Arab Emirates
[7] Sapienza Univ Rome, Dept Oral & Maxillo Facial Sci, Via Caserta 06, I-00161 Rome, Italy
[8] Nair Hosp Dent Coll, Dept Conservat Dent & Endodont, Mumbai 400034, Maharashtra, India
关键词
artificial intelligence; convolutional neural network; dental; diagnosis; oral cancer; prognosis; CLASSIFICATION; PERFORMANCE; ACCURACY; DISEASES; TISSUE;
D O I
10.3390/diagnostics15030280
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background/Objectives: Oral cancer, the sixth most common cancer worldwide, is linked to smoke, alcohol, and HPV. This scoping analysis summarized early-onset oral cancer diagnosis applications to address a gap. Methods: A scoping review identified, selected, and synthesized AI-based oral cancer diagnosis, screening, and prognosis literature. The review verified study quality and relevance using frameworks and inclusion criteria. A full search included keywords, MeSH phrases, and Pubmed. Oral cancer AI applications were tested through data extraction and synthesis. Results: AI outperforms traditional oral cancer screening, analysis, and prediction approaches. Medical pictures can be used to diagnose oral cancer with convolutional neural networks. Smartphone and AI-enabled telemedicine make screening affordable and accessible in resource-constrained areas. AI methods predict oral cancer risk using patient data. AI can also arrange treatment using histopathology images and address data heterogeneity, restricted longitudinal research, clinical practice inclusion, and ethical and legal difficulties. Future potential includes uniform standards, long-term investigations, ethical and regulatory frameworks, and healthcare professional training. Conclusions: AI may transform oral cancer diagnosis and treatment. It can develop early detection, risk modelling, imaging phenotypic change, and prognosis. AI approaches should be standardized, tested longitudinally, and ethical and practical issues related to real-world deployment should be addressed.
引用
收藏
页数:31
相关论文
共 97 条
[71]   Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning [J].
Song, Bofan ;
Sunny, Sumsum ;
Uthoff, Ross D. ;
Patrick, Sanjana ;
Suresh, Amritha ;
Kolur, Trupti ;
Keerthi, G. ;
Anbarani, Afarin ;
Wilder-Smith, Petra ;
Kuriakose, Moni Abraham ;
Birur, Praveen ;
Rodriguez, Jeffrey J. ;
Liang, Rongguang .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (11) :5318-5329
[72]   Oral squamous cell carcinoma diagnosed from saliva metabolic profiling [J].
Song, Xiaowei ;
Yang, Xihu ;
Narayanan, Rahul ;
Shankar, Vishnu ;
Ethiraj, Sathiyaraj ;
Wang, Xiang ;
Duan, Ning ;
Ni, Yan-Hong ;
Hu, Qingang ;
Zare, Richard N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (28) :16167-16173
[73]   Enhancing oral squamous cell carcinoma detection: a novel approach using improved EfficientNet architecture [J].
Soni, Aradhana ;
Sethy, Prabira Kumar ;
Dewangan, Amit Kumar ;
Nanthaamornphong, Aziz ;
Behera, Santi Kumari ;
Devi, Baishnu .
BMC ORAL HEALTH, 2024, 24 (01)
[74]   Diagnostic accuracy of contrast-enhanced computed tomography in assessing bone invasion in patients with oral squamous cell carcinoma [J].
Struckmeier, Ann-Kristin ;
Buchbender, Mayte ;
Agaimy, Abbas ;
Kesting, Marco .
CLINICAL ORAL INVESTIGATIONS, 2024, 28 (06)
[75]   Diagnostic accuracy of contrast-enhanced computed tomography in assessing cervical lymph node status in patients with oral squamous cell carcinoma [J].
Struckmeier, Ann-Kristin ;
Yekta, Ebrahim ;
Agaimy, Abbas ;
Kopp, Markus ;
Buchbender, Mayte ;
Moest, Tobias ;
Lutz, Rainer ;
Kesting, Marco .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (19) :17437-17450
[76]   Current Insights into Oral Cancer Diagnostics [J].
Su, Yee-Fun ;
Chen, Yi-Ju ;
Tsai, Fa-Tzu ;
Li, Wan-Chun ;
Hsu, Ming-Lun ;
Wang, Ding-Han ;
Yang, Cheng-Chieh .
DIAGNOSTICS, 2021, 11 (07)
[77]  
Subramanian, 2015, CANC DIS CONTROL PRI, V3, DOI 10.1596/978-1-4648-0349-9_ch5
[78]   Effectiveness of deep learning classifiers in histopathological diagnosis of oral squamous cell carcinoma by pathologists [J].
Sukegawa, Shintaro ;
Ono, Sawako ;
Tanaka, Futa ;
Inoue, Yuta ;
Hara, Takeshi ;
Yoshii, Kazumasa ;
Nakano, Keisuke ;
Takabatake, Kiyofumi ;
Kawai, Hotaka ;
Katsumitsu, Shimada ;
Nakai, Fumi ;
Nakai, Yasuhiro ;
Miyazaki, Ryo ;
Murakami, Satoshi ;
Nagatsuka, Hitoshi ;
Miyake, Minoru .
SCIENTIFIC REPORTS, 2023, 13 (01)
[79]   A smart tele-cytology point-of-care platform for oral cancer screening [J].
Sunny, Sumsum ;
Baby, Arun ;
James, Bonney Lee ;
Balaji, Dev ;
Aparna, N., V ;
Rana, Maitreya H. ;
Gurpur, Praveen ;
Skandarajah, Arunan ;
D'Ambrosio, Michael ;
Ramanjinappa, Ravindra Doddathimmasandra ;
Mohan, Sunil Paramel ;
Raghavan, Nisheena ;
Kandasarma, Uma ;
Sangeetha, N. ;
Raghavan, Subhasini ;
Hedne, Naveen ;
Koch, Felix ;
Fletcher, Daniel A. ;
Selvam, Sumithra ;
Kollegal, Manohar ;
Birur, Praveen N. ;
Ladic, Lance ;
Suresh, Amritha ;
Pandya, Hardik J. ;
Kuriakose, Moni Abraham .
PLOS ONE, 2019, 14 (11)
[80]   Deep Learning for the Preoperative Diagnosis of Metastatic Cervical Lymph Nodes on Contrast-Enhanced Computed ToMography in Patients with Oral Squamous Cell Carcinoma [J].
Tomita, Hayato ;
Yamashiro, Tsuneo ;
Heianna, Joichi ;
Nakasone, Toshiyuki ;
Kobayashi, Tatsuaki ;
Mishiro, Sono ;
Hirahara, Daisuke ;
Takaya, Eichi ;
Mimura, Hidefumi ;
Murayama, Sadayuki ;
Kobayashi, Yasuyuki .
CANCERS, 2021, 13 (04) :1-11