Artificial Intelligence in Oral Cancer: A Comprehensive Scoping Review of Diagnostic and Prognostic Applications

被引:5
作者
Vinay, Vineet [1 ,2 ]
Jodalli, Praveen [1 ]
Chavan, Mahesh S. [3 ]
Buddhikot, Chaitanya. S. [4 ]
Luke, Alexander Maniangat [5 ,6 ]
Ingafou, Mohamed Saleh Hamad [5 ,6 ]
Reda, Rodolfo [7 ]
Pawar, Ajinkya M. [8 ]
Testarelli, Luca [7 ]
机构
[1] Manipal Acad Higher Educ, Manipal Coll Dent Sci Mangalore, Dept Publ Hlth Dent, Manipal 576104, Karnataka, India
[2] Sinhgad Dent Coll & Hosp, Dept Publ Hlth Dent, Pune 411041, Maharashtra, India
[3] Sinhgad Dent Coll & Hosp, Dept Oral Med & Radiol, Pune 411041, Maharashtra, India
[4] Dr DY Patil Vidyapeeth Pune, Dr DY Patil Dent Coll & Hosp Pune, Dept Publ Hlth Dent, Pune 411018, Maharashtra, India
[5] Ajman Univ, Coll Dent, Dept Clin Sci, POB 346, Ajman, U Arab Emirates
[6] Ajman Univ, Ctr Med & Bioallied Hlth Sci Res, POB 346, Ajman, U Arab Emirates
[7] Sapienza Univ Rome, Dept Oral & Maxillo Facial Sci, Via Caserta 06, I-00161 Rome, Italy
[8] Nair Hosp Dent Coll, Dept Conservat Dent & Endodont, Mumbai 400034, Maharashtra, India
关键词
artificial intelligence; convolutional neural network; dental; diagnosis; oral cancer; prognosis; CLASSIFICATION; PERFORMANCE; ACCURACY; DISEASES; TISSUE;
D O I
10.3390/diagnostics15030280
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background/Objectives: Oral cancer, the sixth most common cancer worldwide, is linked to smoke, alcohol, and HPV. This scoping analysis summarized early-onset oral cancer diagnosis applications to address a gap. Methods: A scoping review identified, selected, and synthesized AI-based oral cancer diagnosis, screening, and prognosis literature. The review verified study quality and relevance using frameworks and inclusion criteria. A full search included keywords, MeSH phrases, and Pubmed. Oral cancer AI applications were tested through data extraction and synthesis. Results: AI outperforms traditional oral cancer screening, analysis, and prediction approaches. Medical pictures can be used to diagnose oral cancer with convolutional neural networks. Smartphone and AI-enabled telemedicine make screening affordable and accessible in resource-constrained areas. AI methods predict oral cancer risk using patient data. AI can also arrange treatment using histopathology images and address data heterogeneity, restricted longitudinal research, clinical practice inclusion, and ethical and legal difficulties. Future potential includes uniform standards, long-term investigations, ethical and regulatory frameworks, and healthcare professional training. Conclusions: AI may transform oral cancer diagnosis and treatment. It can develop early detection, risk modelling, imaging phenotypic change, and prognosis. AI approaches should be standardized, tested longitudinally, and ethical and practical issues related to real-world deployment should be addressed.
引用
收藏
页数:31
相关论文
共 97 条
[11]  
Bassani Sara, 2022, J Pathol Inform, V13, P100153, DOI 10.1016/j.jpi.2022.100153
[12]   Field validation of deep learning based Point-of-Care device for early detection of oral malignant and potentially malignant disorders [J].
Birur, Praveen N. ;
Song, Bofan ;
Sunny, Sumsum P. ;
Keerthi, G. ;
Mendonca, Pramila ;
Mukhia, Nirza ;
Li, Shaobai ;
Patrick, Sanjana ;
Shubha, G. ;
Subhashini, A. R. ;
Imchen, Tsusennaro ;
Leivon, Shirley T. ;
Kolur, Trupti ;
Shetty, Vivek ;
Bhushan, Vidya R. ;
Vaibhavi, Daksha ;
Rajeev, Surya ;
Pednekar, Sneha ;
Banik, Ankita Dutta ;
Ramesh, Rohan Michael ;
Pillai, Vijay ;
Kathryn, O. S. ;
Smith, Petra Wilder ;
Sigamani, Alben ;
Suresh, Amritha ;
Liang, Rongguang ;
Kuriakose, Moni A. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[13]   Oral cancer diagnosis and perspectives in India [J].
Borse V. ;
Konwar A.N. ;
Buragohain P. .
Sensors International, 2020, 1
[14]   Convolutional Neural Network-Based Clinical Predictors of Oral Dysplasia: Class Activation Map Analysis of Deep Learning Results [J].
Camalan, Seda ;
Mahmood, Hanya ;
Binol, Hamidullah ;
Araujo, Anna Luiza Damaceno ;
Santos-Silva, Alan Roger ;
Vargas, Pablo Agustin ;
Lopes, Marcio Ajudarte ;
Khurram, Syed Ali ;
Gurcan, Metin N. .
CANCERS, 2021, 13 (06) :1-18
[15]   Effect of non-surgical periodontal therapy on glycemic control of type 2 diabetes mellitus: a systematic review and Bayesian network meta-analysis [J].
Cao, Ruoyan ;
Li, Qiulan ;
Wu, Qiqi ;
Yao, Mianfeng ;
Chen, Yu ;
Zhou, Hongbo .
BMC ORAL HEALTH, 2019, 19 (01)
[16]   Application of three-dimensional reconstruction technology in dentistry: a narrative review [J].
Cen, Yueyan ;
Huang, Xinyue ;
Liu, Jialing ;
Qin, Yichun ;
Wu, Xinrui ;
Ye, Shiyang ;
Du, Shufang ;
Liao, Wen .
BMC ORAL HEALTH, 2023, 23 (01)
[17]   Machine Learning in oncology: A clinical appraisal [J].
Cuocolo, Renato ;
Caruso, Martina ;
Perillo, Teresa ;
Ugga, Lorenzo ;
Petretta, Mario .
CANCER LETTERS, 2020, 481 :55-62
[18]   Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network [J].
Das, Navarun ;
Hussain, Elima ;
Mahanta, Lipi B. .
NEURAL NETWORKS, 2020, 128 :47-60
[19]   Diagnosis of Oral Squamous Cell Carcinoma Using Deep Neural Networks and Binary Particle Swarm Optimization on Histopathological Images: An AIoMT Approach [J].
Deif, Mohanad A. ;
Attar, Hani ;
Amer, Ayman ;
Elhaty, Ismail A. ;
Khosravi, Mohammad R. ;
Solyman, Ahmed A. A. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
[20]   Application of CT and MRI images based on artificial intelligence to predict lymph node metastases in patients with oral squamous cell carcinoma: a subgroup meta-analysis [J].
Deng, Cheng ;
Hu, Jun ;
Tang, Ping ;
Xu, Tao ;
He, Ling ;
Zeng, Zesheng ;
Sheng, Jianfeng .
FRONTIERS IN ONCOLOGY, 2024, 14