Moderate deviations of triangle counts in sparse Erdős-Rényi random graphs G(n, m) and G(n, p)

被引:0
作者
Alvarado, Jose D. [1 ]
de Oliveira, Leonardo Goncalves [2 ]
Griffiths, Simon [2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska ul 19, Ljubljana 1000, Slovenia
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rua Marques de Sao Vicente 225 Gavea, BR-22451900 Rio de Janeiro, Brazil
基金
巴西圣保罗研究基金会;
关键词
SUBGRAPH COUNTS; ASYMPTOTIC ENUMERATION; DEGREE SEQUENCE; U-STATISTICS; UPPER TAILS; INEQUALITIES; NUMBER; BOUNDS;
D O I
10.1007/s00440-025-01359-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the question of determining the probability of triangle count deviations in the Erdos-Renyi random graphs G (n,m) and G (n,p)with densities larger than n(-1/2)(log n)(1/2). In particular, we determine the log probability log P(N-Delta(G) > (1+delta)p(3)n(3))up to a constant factor across essentially the entire range of possible deviations, in both the G (n,m) and G (n,p) model. For the G(n,p) model, we also prove a stronger result, up to a(1+o(1)) factor, in the non-localised regime. We also obtain some results for the lower tail and for counts of cherries (paths of length 2).
引用
收藏
页码:779 / 851
页数:73
相关论文
共 41 条
[11]   The large deviation principle for the Erdos-Renyi random graph [J].
Chatterjee, Sourav ;
Varadhan, S. R. S. .
EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (07) :1000-1017
[12]   Large deviations of subgraph counts for sparse Erdos-Renyi graphs [J].
Cook, Nicholas ;
Dembo, Amir .
ADVANCES IN MATHEMATICS, 2020, 373
[13]   Upper tails for triangles [J].
DeMarco, B. ;
Kahn, J. .
RANDOM STRUCTURES & ALGORITHMS, 2012, 40 (04) :452-459
[14]   Moderate Deviations via Cumulants [J].
Doering, Hanna ;
Eichelsbacher, Peter .
JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (02) :360-385
[15]   Moderate deviations in a random graph and for the spectrum of Bernoulli random matrices [J].
Doering, Hanna ;
Eichelsbacher, Peter .
ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 :2636-2656
[17]  
Fray V., 2016, CONVERGENCE NORMALIT, DOI [10.1007/978-3-319-46822-8, DOI 10.1007/978-3-319-46822-8]
[18]   TAIL PROBABILITIES FOR MARTINGALES [J].
FREEDMAN, DA .
ANNALS OF PROBABILITY, 1975, 3 (01) :100-118
[19]   Upper Tail Behavior of the Number of Triangles in Random Graphs with Constant Average Degree [J].
Ganguly, Shirshendu ;
Hiesmayr, Ella ;
Nam, Kyeongsik .
COMBINATORICA, 2024, 44 (04) :699-740
[20]   MODERATE DEVIATIONS OF SUBGRAPH COUNTS IN THE ERDOS-RENYI RANDOM GRAPHS G(n, m) AND G(n, p) [J].
Goldschmidt, Christina ;
Griffiths, Simon ;
Scott, Alex .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (08) :5517-5585