Moderate deviations of triangle counts in sparse Erdős-Rényi random graphs G(n, m) and G(n, p)

被引:0
作者
Alvarado, Jose D. [1 ]
de Oliveira, Leonardo Goncalves [2 ]
Griffiths, Simon [2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska ul 19, Ljubljana 1000, Slovenia
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, Rua Marques de Sao Vicente 225 Gavea, BR-22451900 Rio de Janeiro, Brazil
基金
巴西圣保罗研究基金会;
关键词
SUBGRAPH COUNTS; ASYMPTOTIC ENUMERATION; DEGREE SEQUENCE; U-STATISTICS; UPPER TAILS; INEQUALITIES; NUMBER; BOUNDS;
D O I
10.1007/s00440-025-01359-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the question of determining the probability of triangle count deviations in the Erdos-Renyi random graphs G (n,m) and G (n,p)with densities larger than n(-1/2)(log n)(1/2). In particular, we determine the log probability log P(N-Delta(G) > (1+delta)p(3)n(3))up to a constant factor across essentially the entire range of possible deviations, in both the G (n,m) and G (n,p) model. For the G(n,p) model, we also prove a stronger result, up to a(1+o(1)) factor, in the non-localised regime. We also obtain some results for the lower tail and for counts of cherries (paths of length 2).
引用
收藏
页码:779 / 851
页数:73
相关论文
共 41 条
[2]  
Azuma K., 1967, Tohoku Math. J., V19, P357
[3]   SOME APPROXIMATIONS TO THE BINOMIAL-DISTRIBUTION FUNCTION [J].
BAHADUR, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (01) :43-54
[4]   A CENTRAL LIMIT-THEOREM FOR DECOMPOSABLE RANDOM-VARIABLES WITH APPLICATIONS TO RANDOM GRAPHS [J].
BARBOUR, AD ;
KARONSKI, M ;
RUCINSKI, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (02) :125-145
[5]   VERTICES OF GIVEN DEGREE IN A RANDOM GRAPH [J].
BOLLOBAS, B .
JOURNAL OF GRAPH THEORY, 1982, 6 (02) :147-155
[6]   DEGREE SEQUENCES OF RANDOM GRAPHS [J].
BOLLOBAS, B .
DISCRETE MATHEMATICS, 1981, 33 (01) :1-19
[7]  
Bollobas B., 2001, Random graphs, DOI DOI 10.1017/CBO9780511814068
[8]   AN INTRODUCTION TO LARGE DEVIATIONS FOR RANDOM GRAPHS [J].
Chatterjee, Sourav .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 53 (04) :617-642
[9]   Nonlinear large deviations [J].
Chatterjee, Sourav ;
Dembo, Amir .
ADVANCES IN MATHEMATICS, 2016, 299 :396-450
[10]   The missing log in large deviations for triangle counts [J].
Chatterjee, Sourav .
RANDOM STRUCTURES & ALGORITHMS, 2012, 40 (04) :437-451