Powder bed fusion on single lines of Cu-doped hydroxyapatite powder bed

被引:0
作者
l'Alzit, Francois Rouze [1 ]
Glorieux, Benoit [1 ]
Cardinal, Thierry [1 ]
Gaudon, Manuel [1 ]
机构
[1] CNRS, UMR5026, Inst Chim Matiere Condensee Bordeaux, 87 Ave Dr A Schweitzer, F-33608 Pessac, France
关键词
Powder bed fusion; Hydroxyapatite; Thermal gradients; Ceramics; SUBSTITUTED HYDROXYAPATITES; CALCIUM-PHOSPHATE; LASER-BEAM; SCAFFOLD; OPTIMIZATION; FABRICATION;
D O I
10.1016/j.matdes.2025.113757
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study aims to design ceramic scaffolds for precise bone reconstruction using Powder Bed Laser Sintering (PBLS) to create cohesive Cu-doped HAp ribbons from a single lasered line on a thin powder bed atop a silicate lime substrate. Depending on laser parameters, two ribbon types-delaminated (CDR) or anchored (CAR)-are produced, both exhibiting surface density gradients from the center to the edges. Microscale analysis reveals surface density gradients in both ribbon types, extending from center to edge. CDRs also show depth-wise density variations, resulting in mechanical stresses that cause detachment and curling. In CARs, intense local heating and thermal conductivity cause a temperature rise beyond the irradiated area. The substrate acts as a thermal barrier, concentrating heat at the film-substrate interface and ensuring ribbon adhesion. Cracks propagate perpendicular to isothermal lines, enabling controlled crack patterning.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Analysis of hydraulic units manufactured by powder bed fusion
    Pavel, Rekadze
    Leonid, Rodionov
    Ivan, Satsyuk
    2018 GLOBAL FLUID POWER SOCIETY PHD SYMPOSIUM (GFPS), 2018,
  • [32] An overview of residual stresses in metal powder bed fusion
    Bartlett, Jamison L.
    Li, Xiaodong
    ADDITIVE MANUFACTURING, 2019, 27 : 131 - 149
  • [33] Tomography of Laser Powder Bed Fusion Maraging Steel
    Cerezo, Pablo M.
    Aguilera, Jose A.
    Garcia-Gonzalez, Antonio
    Lopez-Crespo, Pablo
    MATERIALS, 2024, 17 (04)
  • [34] Understanding Laser Powder Bed Fusion Surface Roughness
    Snyder, Jacob C.
    Thole, Karen A.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (07):
  • [35] Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes
    Sutton, Austin T.
    Kriewall, Caitlin S.
    Leu, Ming C.
    Newkirk, Joseph W.
    VIRTUAL AND PHYSICAL PROTOTYPING, 2017, 12 (01) : 3 - 29
  • [36] Feasibility of Melting NbC Using Electron Beam Powder Bed Fusion
    Wennersten, Karin
    Xu, Jinghao
    Armakavicius, Nerijus
    Wiberg, Anton
    Najafabadi, Hossain Nadali
    Moverare, Johan
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (06)
  • [37] Laser powder bed fusion of ultra-high-molecular-weight polyethylene/hydroxyapatite composites for bone tissue engineering
    Schappo, Henrique
    Salmoria, Gean Vitor
    Magnaudeix, Amandine
    Dumur, Adeline
    Renaudie, Emeline
    Giry, Karine
    Damia, Chantal
    Hotza, Dachamir
    POWDER TECHNOLOGY, 2022, 412
  • [38] Powder bed fusion of poly(phenylene sulfide) at bed temperatures significantly below melting
    Chatham, Camden A.
    Long, Timothy E.
    Williams, Christopher B.
    ADDITIVE MANUFACTURING, 2019, 28 : 506 - 516
  • [39] Processing-microstructure relationships in ferrous alloys via mixed powder laser powder bed fusion
    Tobah, Mustafa
    Zhang, Zenan
    Andani, Mohsen Taheri
    Sundararaghavan, Veera
    Misra, Amit
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 5417 - 5428
  • [40] Simulation of powder spreading of functionally graded materials in powder bed fusion additive manufacturing
    Wang, Lin
    Li, Erlei
    Zhou, Zongyan
    Zhang, Baicheng
    Yu, Aibing
    ACTA MECHANICA SINICA, 2023, 39 (01)