Towards practical all-solid-state batteries: structural engineering innovations for sulfide-based solid electrolytes

被引:0
作者
Roh, Jihun [1 ]
Do, Namgyu [1 ]
Lee, Hyungjin [1 ]
Lee, Sangki [2 ]
Pyun, Jangwook [2 ]
Hong, Seung-Tae [1 ,3 ,4 ]
Chae, Munseok S. [2 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Energy Sci & Engn, Daegu 42988, South Korea
[2] Pukyong Natl Univ, Dept Nanotechnol Engn, Pusan 48513, South Korea
[3] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA
[4] NexeriaTek Inc, Daejeon 34016, South Korea
来源
ENERGY MATERIALS | 2025年 / 5卷 / 02期
基金
新加坡国家研究基金会;
关键词
All-solid-state batteries; sulfide solid electrolyte; super ionic conductor; thio-germanate; LITHIUM IONIC CONDUCTOR; CRYSTAL-STRUCTURE; SUPERIONIC CONDUCTOR; LI2S-P2S5; GLASSES; THIO-LISICON; PHASE-TRANSITION; LI6PS5X X; LI; LI7P3S11; ARGYRODITES;
D O I
10.20517/energymater.2024.219
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sulfide-based solid electrolytes have emerged as pivotal components for the advancement of next-generation all-solid-state batteries, owing to the battery safety and higher energy density. This paper reviews the recent material innovations in sulfide-based solid electrolytes, focusing on enhancing their ionic conductivities based on an understanding of their crystal structures. Through a comprehensive analysis of current research trends and future perspectives, this review aims to provide a roadmap for the development of more robust and efficient sulfide-based solid electrolytes, which contribute to the realization of safer and higher-performance all-solid-state batteries.
引用
收藏
页数:26
相关论文
共 146 条
  • [131] Design principles for sodium superionic conductors
    Wang, Shuo
    Fu, Jiamin
    Liu, Yunsheng
    Saravanan, Ramanuja Srinivasan
    Luo, Jing
    Deng, Sixu
    Sham, Tsun-Kong
    Sun, Xueliang
    Mo, Yifei
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [132] Wang Y, 2015, NAT MATER, V14, P1026, DOI [10.1038/nmat4369, 10.1038/NMAT4369]
  • [133] Warburg E., 1884, Ann. Phys., V257, P622
  • [134] Winkler C., 1886, BER DTSCH CHEM GES, V19, P210, DOI [https://doi.org/10.1002/cber.18860190156, DOI 10.1002/CBER.18860190156]
  • [135] Behavior of Li defects in solid electrolyte lithium thiophosphate Li7P3S11: A first principles study
    Xiong, K.
    Longo, R. C.
    Santosh, K. C.
    Wang, W.
    Cho, Kyeongjae
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2014, 90 : 44 - 49
  • [136] Nonaqueous liquid electrolytes for lithium-based rechargeable batteries
    Xu, K
    [J]. CHEMICAL REVIEWS, 2004, 104 (10) : 4303 - 4417
  • [137] Crystal structure of a superionic conductor, Li7P3S11
    Yamane, Hisanori
    Shibata, Masatoshi
    Shimane, Yukio
    Junke, Tadanori
    Seino, Yoshikatsu
    Adams, Stefan
    Minami, Keilchi
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    [J]. SOLID STATE IONICS, 2007, 178 (15-18) : 1163 - 1167
  • [138] Preparation and ionic conductivities of (100-x)(0.75Li2S•0.25P2S5)•xLiBH4 glass electrolytes
    Yamauchi, Akihiro
    Sakuda, Atsushi
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    [J]. JOURNAL OF POWER SOURCES, 2013, 244 : 707 - 710
  • [139] Effects of different glass formers on Li2S-P2S5-MS2 (M = Si, Ge, Sn) chalcogenide solid-state electrolytes
    Zhang, Jiahui
    Gao, Chengwei
    He, Chengmiao
    Tan, Linling
    Kang, Shiliang
    Jiao, Qing
    Xu, Tiefeng
    Lin, Changgui
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (01) : 354 - 364
  • [140] Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries
    Zhang, Qing
    Cao, Daxian
    Ma, Yi
    Natan, Avi
    Aurora, Peter
    Zhu, Hongli
    [J]. ADVANCED MATERIALS, 2019, 31 (44)