Efficient computation of sparse and robust maximum association estimators

被引:0
作者
Pfeiffer, Pia [1 ]
Alfons, Andreas [2 ]
Filzmoser, Peter [1 ]
机构
[1] TU Wien, Inst Stat & Math Methods Econ, Vienna, Austria
[2] Erasmus Univ, Dept Econometr, Rotterdam, Netherlands
关键词
Biconvex optimization; Sparse robust canonical correlation; Robust estimation; Penalized canonical correlation; CANONICAL CORRELATION; DIMENSIONAL COVARIANCE; REGRESSION; BREAKDOWN; MATRIX; SETS;
D O I
10.1016/j.csda.2025.108133
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Robust statistical estimators offer resilience against outliers but are often computationally challenging, particularly in high-dimensional sparse settings. Modern optimization techniques are utilized for robust sparse association estimators without imposing constraints on the covariance structure. The approach splits the problem into a robust estimation phase, followed by optimization of a decoupled, biconvex problem to derive the sparse canonical vectors. An augmented Lagrangian algorithm, combined with a modified adaptive gradient descent method, induces sparsity through simultaneous updates of both canonical vectors. Results demonstrate improved precision over existing methods, with high-dimensional empirical examples illustrating the effectiveness of this approach. The methodology can also be extended to other robust sparse estimators.
引用
收藏
页数:20
相关论文
共 64 条
[11]   The Gaussian rank correlation estimator: robustness properties [J].
Boudt, Kris ;
Cornelissen, Jonathan ;
Croux, Christophe .
STATISTICS AND COMPUTING, 2012, 22 (02) :471-483
[12]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[13]  
Boyd S., 2004, Convex optimization, DOI 10.1017/CBO9780511804441
[14]   Robust canonical correlations: A comparative study [J].
Branco, JA ;
Croux, C ;
Filzmoser, P ;
Oliveira, MR .
COMPUTATIONAL STATISTICS, 2005, 20 (02) :203-229
[15]  
Croux C., 2002, Rev. Stat. Appl., V50, P5
[16]   Influence functions of the Spearman and Kendall correlation measures [J].
Croux, Christophe ;
Dehon, Catherine .
STATISTICAL METHODS AND APPLICATIONS, 2010, 19 (04) :497-515
[17]   Breakdown and groups - Rejoinder [J].
Davies, PL ;
Gather, U .
ANNALS OF STATISTICS, 2005, 33 (03) :1016-1035
[18]  
Dejean Sebastien, 2023, CRAN
[19]  
Deng KK, 2020, Arxiv, DOI arXiv:2003.09195
[20]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499