Efficient computation of sparse and robust maximum association estimators

被引:0
作者
Pfeiffer, Pia [1 ]
Alfons, Andreas [2 ]
Filzmoser, Peter [1 ]
机构
[1] TU Wien, Inst Stat & Math Methods Econ, Vienna, Austria
[2] Erasmus Univ, Dept Econometr, Rotterdam, Netherlands
关键词
Biconvex optimization; Sparse robust canonical correlation; Robust estimation; Penalized canonical correlation; CANONICAL CORRELATION; DIMENSIONAL COVARIANCE; REGRESSION; BREAKDOWN; MATRIX; SETS;
D O I
10.1016/j.csda.2025.108133
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Robust statistical estimators offer resilience against outliers but are often computationally challenging, particularly in high-dimensional sparse settings. Modern optimization techniques are utilized for robust sparse association estimators without imposing constraints on the covariance structure. The approach splits the problem into a robust estimation phase, followed by optimization of a decoupled, biconvex problem to derive the sparse canonical vectors. An augmented Lagrangian algorithm, combined with a modified adaptive gradient descent method, induces sparsity through simultaneous updates of both canonical vectors. Results demonstrate improved precision over existing methods, with high-dimensional empirical examples illustrating the effectiveness of this approach. The methodology can also be extended to other robust sparse estimators.
引用
收藏
页数:20
相关论文
共 64 条
[1]   Robust Maximum Association Between Data Sets: The R Package ccaPP [J].
Alfons, Andreas ;
Croux, Christophe ;
Filzmoser, Peter .
AUSTRIAN JOURNAL OF STATISTICS, 2016, 45 (01) :71-79
[2]   Robust Maximum Association Estimators [J].
Alfons, Andreas ;
Croux, Christophe ;
Filzmoser, Peter .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) :436-445
[3]   SPARSE LEAST TRIMMED SQUARES REGRESSION FOR ANALYZING HIGH-DIMENSIONAL LARGE DATA SETS [J].
Alfons, Andreas ;
Croux, Christophe ;
Gelper, Sarah .
ANNALS OF APPLIED STATISTICS, 2013, 7 (01) :226-248
[4]  
Anderson T. W., 1984, WILEY SERIES PROBABI
[5]   Robust estimation of high-dimensional covariance and precision matrices [J].
Avella-Medina, Marco ;
Battey, Heather S. ;
Fan, Jianqing ;
Li, Quefeng .
BIOMETRIKA, 2018, 105 (02) :271-284
[6]  
Bates D., 2024, Matrix: Sparse and Dense Matrix Classes and Methods
[7]   The complexity of computing the MCD-estimator [J].
Bernholt, T ;
Fischer, P .
THEORETICAL COMPUTER SCIENCE, 2004, 326 (1-3) :383-398
[8]  
Bertsekas DP, 1996, CONSTRAINED OPTIMIZA
[9]   COVARIANCE REGULARIZATION BY THRESHOLDING [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (06) :2577-2604
[10]   The minimum regularized covariance determinant estimator [J].
Boudt, Kris ;
Rousseeuw, Peter J. ;
Vanduffel, Steven ;
Verdonck, Tim .
STATISTICS AND COMPUTING, 2020, 30 (01) :113-128