Incorporating Observation Uncertainty into Reinforcement Learning-Based Spacecraft Guidance Schemes

被引:12
作者
Boone, Spencer [1 ]
Bonasera, Stefano [1 ]
McMahon, Jay [2 ]
Bosanac, Natasha [2 ]
Ahmed, Nisar [3 ]
机构
[1] Univ Colorado Boulder, Colorado Ctr Astrodynam Res CCAR, Smead Aerosp Engn Sci, Boulder, CO 80309 USA
[2] Univ Colorado Boulder, Colorado Ctr Astrodynam Res, Smead Aerosp Engn Sci Dept, Boulder, CO 80309 USA
[3] Univ Colorado Boulder, Res & Engn Ctr Unmanned Vehicles, Smead Aerosp Engn Sci Dept, Boulder, CO 80309 USA
来源
AIAA SCITECH 2022 FORUM | 2022年
关键词
TRAJECTORY DESIGN;
D O I
10.2514/6.2022-1765
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this paper, reinforcement learning is used to train a policy that successfully executes a multi-impulse spacecraft orbit transfer between periodic orbits in the Earth-Moon circular restricted three-body problem. A methodology is then developed to make the policy more robust to uncertainties in the observation state (i.e. navigation uncertainties). These methods are applied to a L-2 Lyapunov-to-halo orbit transfer in the Earth-Moon circular restricted three-body problem. This paper demonstrates that a reinforcement learning-based maneuver planner becomes more robust to uncertainties in the state observations by both including these uncertainties in the training environment, and by augmenting the observation vector with knowledge of the state uncertainty magnitudes.
引用
收藏
页数:14
相关论文
共 28 条
[1]  
Andrychowicz M, 2020, Arxiv, DOI arXiv:2006.05990
[2]  
Bertsekas D.P., 2019, Reinforcement Learning and Optimal Control
[3]  
Bonasera S., 2021, 31 AAS AIAA SPAC FLI
[4]   Orbital Guidance Using Higher-Order State Transition Tensors [J].
Boone, Spencer ;
McMahon, Jay .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2021, 44 (03) :493-504
[5]  
Bosanac N., 2021, 2021 AAS AIAA ASTR S
[6]   Trajectory Design for the Wide Field Infrared Survey Telescope Mission [J].
Bosanac, Natasha ;
Webster, Cassandra M. ;
Howell, Kathleen C. ;
Folta, David C. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2019, 42 (09) :1899-1911
[7]  
Brown J.., 2014, 2014 AIAA AAS ASTR S, DOI [10.2514/6.2014-4304, DOI 10.2514/6.2014-4304]
[8]   Challenges of real-world reinforcement learning: definitions, benchmarks and analysis [J].
Dulac-Arnold, Gabriel ;
Levine, Nir ;
Mankowitz, Daniel J. ;
Li, Jerry ;
Paduraru, Cosmin ;
Gowal, Sven ;
Hester, Todd .
MACHINE LEARNING, 2021, 110 (09) :2419-2468
[9]   Least-squares solution of a class of optimal space guidance problems via Theory of Connections [J].
Furfaro, Roberto ;
Mortari, Daniele .
ACTA ASTRONAUTICA, 2020, 168 :92-103
[10]  
Grebow D.J., 2006, Master Thesis