Activated carbon, a versatile material with wide-ranging applications, faces challenges in traditional production methods, particularly in slow heating processes. This study addresses these challenges by proposing an alternative approach-flash heating. Building upon insights from prior studies, this study shifts the focus towards modeling and optimizing flash heating conditions using Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) to establish an in-depth understanding of key variables, aiming to improve production efficiency and activated carbon characteristics. A full 23 factorial design was used to investigate the effects of activation temperature, activation time, and impregnation ratio on flash heated activated carbon production. Under optimum conditions maximum surface area of activated carbon was determined as 1278.2 m2/g at 850 degrees C final activation temperature applying 10 min activation time using 2:1 KOH: biomass wt/wt impregnation ratio. The difference between the experimental and predicted values at the optimum conditions showed that the model was effective for studying the influence of the process parameters on the chemically activated carbon production. The proposed methodology has the potential to revolutionize activated carbon production, offering a more sustainable, cost-effective, and industrially feasible solution with broader applications in environmental remediation and industrial processes.