Development Status of Wideband Millimeter-Wave Receivers for LMT-FINER

被引:0
作者
Kang, Haoran [1 ]
Kojima, Takafumi [1 ]
Sakai, Takeshi [2 ]
Tamura, Yoichi [3 ]
Tetsuka, Airi [2 ]
Masui, Sho [1 ]
Takekoshi, Tatsuya [4 ]
机构
[1] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan
[2] Univ Electrocommun, Chofu, Tokyo 1828585, Japan
[3] Nagoya Univ, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[4] Kitami Inst Technol, Kitami, Hokkaido 0908507, Japan
来源
MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY XII, PT 1 | 2024年 / 13102卷
基金
日本学术振兴会;
关键词
(sub)millimeter wavelength; heterodyne receiver; wideband; waveguide; ORTHOMODE TRANSDUCER; DESIGN; PERFORMANCE; HORNS; OMT;
D O I
10.1117/12.3018190
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Spectroscopic observations of the far-infrared [O III] 88 mu m and [C II] 158 mu m lines present a pathway to explore the mechanisms of the emergence of massive galaxies in the epoch of reionization and beyond, which is one of the most fundamental questions in astronomy. To address this question, the Far-Infrared Nebular Emission Receiver (FINER) project is developing two wideband dual-polarization sideband-separating heterodyne receivers at 120-210 GHz and 210-360 GHz for the Large Millimeter Telescope (LMT) in Mexico. Compared with Atacama Large Millimeter/submillimeter Array (ALMA), LMT provides 40% of ALMA's light-collecting area and a similar atmospheric transmittance, but FINER plans to have an instantaneous intermediate frequency (IF) of 3-21 GHz per sideband per polarization which is five times wider than current ALMA's bandwidth. Therefore, FINER is going to offer cutting-edge spectral scanning capability in the next several years. The project is currently in an active development phase. In this proceeding, the latest development status for FINER, including the optics, wideband waveguide components as well as low-noise superconductor-insulator-superconductor (SIS) mixers is reported.
引用
收藏
页数:14
相关论文
共 41 条
[1]  
Ansys, High Frequency Structure Simulator (HFSS)
[2]  
Arndt F, 2012, IEEE ANTENNAS PROP
[3]   Development of Double-Ridged Wavegide Orthomode Transducer for the 2 MM Band [J].
Asayama, Shin'ichiro ;
Kamikura, Mamoru .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2009, 30 (06) :573-579
[4]   ALMA uncovers the [C II] emission and warm dust continuum in a z=8.31 Lyman break galaxy [J].
Bakx, Tom J. L. C. ;
Tamura, Yoichi ;
Hashimoto, Takuya ;
Inoue, Akio K. ;
Lee, Minju M. ;
Mawatari, Ken ;
Ota, Kazuaki ;
Umehata, Hideki ;
Zackrisson, Erik ;
Hatsukade, Bunyo ;
Kohno, Kotaro ;
Matsuda, Yuichi ;
Matsuo, Hiroshi ;
Okamoto, Takashi ;
Shibuya, Takatoshi ;
Shimizu, Ikkoh ;
Taniguchi, Yoshiaki ;
Yoshida, Naoki .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (03) :4294-4307
[5]  
Carpenter J, 2022, Arxiv, DOI [arXiv:2211.00195, 10.48550/arXiv.2211.00195, DOI 10.48550/ARXIV.2211.00195]
[6]  
CHU TS, 1983, IEEE T ANTENN PROPAG, V31, P614
[7]  
Clarricoats P., 1984, Corrugated Horns for Microwave Antennas
[8]   A Calibrated Digital Sideband Separating Spectrometer for Radio Astronomy Applications [J].
Finger, Ricardo ;
Mena, Patricio ;
Reyes, Nicolas ;
Rodriguez, Rafael ;
Bronfman, Leonardo .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2013, 125 (925) :263-269
[9]   Measuring Cryogenic Waveguide Loss in the Terahertz Regime [J].
Garrett, John D. ;
Tong, Cheuk-Yu Edward .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2022, 12 (03) :293-299
[10]  
Goldsmith P., 1998, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications, DOI [10.1109/9780470546291, DOI 10.1109/9780470546291]