Highly Efficient Polarization-Insensitive Grating Couplers on Thin-Film Lithium Niobate with an Integrated Gold Layer

被引:0
作者
Sultan, Alaa [1 ]
Khalil, Mostafa [1 ]
Mehravar, Leila [1 ]
Xu, Chang-qing [1 ]
机构
[1] McMaster Univ, Dept Engn Phys, Hamilton, ON L8S 4L7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
thin-film lithium niobate; optical waveguide; grating couplers; HIGH COUPLING EFFICIENCY; SILICON; DIFFRACTION; GENERATION;
D O I
10.3390/photonics12020111
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The thin-film lithium niobate platform, which is emerging as a promising photonic integration platform, currently lacks a polarization-insensitive grating coupler (GC), a crucial component for polarization-independent fiber interfaces. This limitation restricts its use in many applications, such as polarization-insensitive modulation systems and polarization management. In this study, we propose a polarization-insensitive nonuniform GC, achieved by intersecting optimal TE- and TM-mode grating periods. Based on our simulation results, the proposed design delivers a coupling efficiency (CE) of 80% for TE and 78.5% for TM polarization, with a polarization-dependent loss of less than 0.14 dB at a wavelength of 1550 nm. The inserted gold layer, i.e., that inside the substrate layer, boosts the CEs of the optimal TE- and TM-mode GC by about 50%, resulting in a highly efficient, polarization-insensitive solution. This advancement enables on-chip polarization diversity applications on the thin-film lithium niobate platform. We also investigate the fabrication and alignment tolerances of the proposed design to ensure robust performance under practical conditions.
引用
收藏
页数:11
相关论文
共 38 条
  • [1] Wang C., Zhang M., Yu M., Zhu R., Hu H., Loncar M., Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation, Nat. Commun, 10, (2019)
  • [2] Zhang M., Buscaino B., Wang C., Shams-Ansari A., Reimer C., Zhu R., Kahn J.M., Loncar M., Broadband electro-optic frequency comb generation in a lithium niobate microring resonator, Nature, 568, pp. 373-377, (2019)
  • [3] Lin J., Bo F., Cheng Y., Xu J., Advances in on-chip photonic devices based on lithium niobate on insulator, Photonics Res, 8, pp. 1910-1936, (2020)
  • [4] Poberaj G., Hu H., Sohler W., Gunter P., Lithium niobate on insulator (LNOI) for micro-photonic devices, Laser Photonics Rev, 6, pp. 488-503, (2012)
  • [5] Boes A., Corcoran B., Chang L., Bowers J., Mitchell A., Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits, Laser Photonics Rev, 12, (2018)
  • [6] Jiang W., Patel R.N., Mayor F.M., McKenna T.P., Arrangoiz-Arriola P., Sarabalis C.J., Witmer J.D., Van Laer R., Safavi-Naeini A.H., Lithium niobate piezo-optomechanical crystals, Optica, 6, pp. 845-853, (2019)
  • [7] Wang J., Zhu B., Hao Z., Bo F., Wang X., Gao F., Li Y., Zhang G., Xu J., Thermo-optic effects in on-chip lithium niobate microdisk resonators, Opt. Express, 24, pp. 21869-21879, (2016)
  • [8] Jiang H., Luo R., Liang H., Chen X., Chen Y., Lin Q., Fast response of photorefraction in lithium niobate microresonators, Opt. Lett, 42, pp. 3267-3270, (2017)
  • [9] Agrell E., Karlsson M., Chraplyvy A.R., Richardson D.J., Krummrich P.M., Winzer P., Roberts K., Fischer J.K., Savory S.J., Eggleton B.J., Et al., Roadmap of optical communications, J. Opt, 18, (2016)
  • [10] Mahmoud M., Ghosh S., Piazza G., Lithium Niobate on Insulator (LNOI) Grating Couplers, CLEO: Science and Innovations, (2015)