PocketDTA: A pocket-based multimodal deep learning model for drug-target affinity prediction

被引:0
作者
Xie, Jiang [1 ]
Zhong, Shengsheng [1 ]
Huang, Dingkai [1 ]
Shao, Wei [2 ]
机构
[1] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sci Res Management Dept, Shanghai 200444, Peoples R China
关键词
Drug-target affinity; Pocket; Binding sites; Deep learning; PROTEIN; NETWORK;
D O I
10.1016/j.compbiolchem.2025.108416
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drug-target affinity prediction is a fundamental task in the field of drug discovery. Extracting and integrating structural information from proteins effectively is crucial to enhance the accuracy and generalization of prediction, which remains a substantial challenge. This paper proposes a pocket-based multimodal deep learning model named PocketDTA for drug-target affinity prediction, based on the principle of "structure determines function". PocketDTA introduces the pocket graph structure that encodes protein residue features pretrained using a biological language model as nodes, while edges represent different protein sequences and spatial distances. This approach overcomes the limitations of lack of spatial information in traditional prediction models with only protein sequence input. Furthermore, PocketDTA employs relational graph convolutional networks at both atomic and residue levels to extract structural features from drugs and proteins. By integrating multimodal information through deep neural networks, PocketDTA combines sequence and structural data to improve affinity prediction accuracy. Experimental results demonstrate that PocketDTA outperforms state-ofthe-art prediction models across multiple benchmark datasets by showing strong generalization under more realistic data splits and confirming the effectiveness of pocket-based methods for affinity prediction.
引用
收藏
页数:11
相关论文
共 51 条
[1]   DeepCDA: deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks [J].
Abbasi, Karim ;
Razzaghi, Parvin ;
Poso, Antti ;
Amanlou, Massoud ;
Ghasemi, Jahan B. ;
Masoudi-Nejad, Ali .
BIOINFORMATICS, 2020, 36 (17) :4633-4642
[2]  
Abdollahi N, 2023, arXiv, DOI DOI 10.48550/ARXIV.2302.03590,ARXIV
[3]   CACHE (Critical Assessment of Computational Hit-finding Experiments): A public-private partnership benchmarking initiative to enable the development of computational methods for hit-finding [J].
Ackloo, Suzanne ;
Al-awar, Rima ;
Amaro, Rommie E. ;
Arrowsmith, Cheryl H. ;
Azevedo, Hatylas ;
Batey, Robert A. ;
Bengio, Yoshua ;
Betz, Ulrich A. K. ;
Bologa, Cristian G. ;
Chodera, John D. ;
Cornell, Wendy D. ;
Dunham, Ian ;
Ecker, Gerhard F. ;
Edfeldt, Kristina ;
Edwards, Aled M. ;
Gilson, Michael K. ;
Gordijo, Claudia R. ;
Hessler, Gerhard ;
Hillisch, Alexander ;
Hogner, Anders ;
Irwin, John J. ;
Jansen, Johanna M. ;
Kuhn, Daniel ;
Leach, Andrew R. ;
Lee, Alpha A. ;
Lessel, Uta ;
Morgan, Maxwell R. ;
Moult, John ;
Muegge, Ingo ;
Oprea, Tudor, I ;
Perry, Benjamin G. ;
Riley, Patrick ;
Rousseaux, Sophie A. L. ;
Saikatendu, Kumar Singh ;
Santhakumar, Vijayaratnam ;
Schapira, Matthieu ;
Scholten, Cora ;
Todd, Matthew H. ;
Vedadi, Masoud ;
Volkamer, Andrea ;
Willson, Timothy M. .
NATURE REVIEWS CHEMISTRY, 2022, 6 (04) :287-295
[4]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[5]   E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials [J].
Batzner, Simon ;
Musaelian, Albert ;
Sun, Lixin ;
Geiger, Mario ;
Mailoa, Jonathan P. ;
Kornbluth, Mordechai ;
Molinari, Nicola ;
Smidt, Tess E. ;
Kozinsky, Boris .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   Biopython']python: freely available Python']Python tools for computational molecular biology and bioinformatics [J].
Cock, Peter J. A. ;
Antao, Tiago ;
Chang, Jeffrey T. ;
Chapman, Brad A. ;
Cox, Cymon J. ;
Dalke, Andrew ;
Friedberg, Iddo ;
Hamelryck, Thomas ;
Kauff, Frank ;
Wilczynski, Bartek ;
de Hoon, Michiel J. L. .
BIOINFORMATICS, 2009, 25 (11) :1422-1423
[7]   Deep Learning-Based Modeling of Drug-Target Interaction Prediction Incorporating Binding Site Information of Proteins [J].
D'Souza, Sofia ;
Prema, K. V. ;
Balaji, S. ;
Shah, Ronak .
INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2023, 15 (02) :306-315
[8]   Comprehensive analysis of kinase inhibitor selectivity [J].
Davis, Mindy I. ;
Hunt, Jeremy P. ;
Herrgard, Sanna ;
Ciceri, Pietro ;
Wodicka, Lisa M. ;
Pallares, Gabriel ;
Hocker, Michael ;
Treiber, Daniel K. ;
Zarrinkar, Patrick P. .
NATURE BIOTECHNOLOGY, 2011, 29 (11) :1046-U124
[9]   Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future directions [J].
Dhakal, Ashwin ;
McKay, Cole ;
Tanner, John J. ;
Cheng, Jianlin .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
[10]   Three-Dimensional Convolutional Neural Networks and a Cross-Docked Data Set for Structure-Based Drug Design [J].
Francoeur, Paul G. ;
Masuda, Tomohide ;
Sunseri, Jocelyn ;
Jia, Andrew ;
Iovanisci, Richard B. ;
Snyder, Ian ;
Koes, David R. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (09) :4200-4215