Evidence Estimation in Gaussian Graphical Models Using a Telescoping Block Decomposition of the Precision Matrix

被引:0
|
作者
Bhadra, Anindya [1 ]
Sagar, Ksheera [1 ]
Rowe, David [1 ]
Banerjee, Sayantan [2 ]
Datta, Jyotishka [3 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[2] Indian Inst Management Indore, Operat Management & Quantitat Tech Area, Indore 453556, MP, India
[3] Virginia Polytech Inst & State Univ, Dept Stat, Blacksburg, VA 24060 USA
基金
美国国家科学基金会;
关键词
Bayes factor; Chib's method; Graphical models; Marginal likelihood; MARGINAL LIKELIHOOD; NORMALIZING CONSTANTS; BAYESIAN-INFERENCE; SELECTION; SAMPLER; LAWS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Marginal likelihood, also known as model evidence, is a fundamental quantity in Bayesian statistics. It is used for model selection using Bayes factors or for empirical Bayes tuning of prior hyper-parameters. Yet, the calculation of evidence has remained a longstanding open problem in Gaussian graphical models. Currently, the only feasible solutions that exist are for special cases such as the Wishart or G-Wishart, in moderate dimensions. We develop an approach based on a novel telescoping block decomposition of the precision matrix that allows the estimation of evidence by application of Chib's technique under a very broad class of priors under mild requirements. Specifically, the requirements are: (a) the priors on the diagonal terms on the precision matrix can be written as gamma or scale mixtures of gamma random variables and (b) those on the off-diagonal terms can be represented as normal or scale mixtures of normal. This includes structured priors such as the Wishart or G-Wishart, and more recently introduced element-wise priors, such as the Bayesian graphical lasso and the graphical horseshoe. Among these, the true marginal is known in an analytically closed form for Wishart, providing a useful validation of our approach. For the general setting of the other three, and several more priors satisfying conditions (a) and (b) above, the calculation of evidence has remained an open question that this article resolves under a unifying framework.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] Distributed Covariance Estimation in Gaussian Graphical Models
    Wiesel, Ami
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) : 211 - 220
  • [2] Covariance Estimation in Decomposable Gaussian Graphical Models
    Wiesel, Ami
    Eldar, Yonina C.
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1482 - 1492
  • [3] The cluster graphical lasso for improved estimation of Gaussian graphical models
    Tan, Kean Ming
    Witten, Daniela
    Shojaie, Ali
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 85 : 23 - 36
  • [4] On some algorithms for estimation in Gaussian graphical models
    Hojsgaard, S.
    Lauritzen, S.
    BIOMETRIKA, 2024, 111 (04) : 1201 - 1219
  • [5] Learning Block Structured Graphs in Gaussian Graphical Models
    Colombi, Alessandro
    Argiento, Raffaele
    Paci, Lucia
    Pini, Alessia
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (01) : 152 - 165
  • [6] Robust Estimation of Tree Structured Gaussian Graphical Models
    Katiyar, Ashish
    Hoffmann, Jessica
    Caramanis, Constantine
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [7] Joint Estimation of Multiple Conditional Gaussian Graphical Models
    Huang, Feihu
    Chen, Songcan
    Huang, Sheng-Jun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (07) : 3034 - 3046
  • [8] Bayesian covariance matrix estimation using a mixture of decomposable graphical models
    Armstrong, Helen
    Carter, Christopher K.
    Wong, Kin Foon Kevin
    Kohn, Robert
    STATISTICS AND COMPUTING, 2009, 19 (03) : 303 - 316
  • [9] Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models
    Huang, Feihu
    Chen, Songcan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (11) : 2606 - 2620
  • [10] TEXTURE ANALYSIS USING GAUSSIAN GRAPHICAL MODELS
    Yang, Guan
    Feng, Guo-Can
    Luo, Zhi-Hong
    Liu, Zhi-Yong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2012, 10 (02)