The influence of duplex-phase structure evolution and second phase on corrosion behavior of Mg-Li-Zn-Y alloys

被引:1
作者
Cao, Xin [1 ]
Sun, Beibei [2 ]
Zhong, Feng [1 ]
Wang, Tao [1 ]
Pi, Lin [1 ]
Zhang, Jiaxin [1 ]
Cheng, Xu [1 ]
Liang, Ming [1 ]
Li, Jianfeng [1 ]
机构
[1] Northwest Inst Nonferrous Met Res, Xian 710016, Peoples R China
[2] Xian Univ Technol, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
Mg-Li alloy; Duplex phase structure; Rolling; KPFM; Anodic dissolution; MECHANICAL-PROPERTIES; LOCALIZED CORROSION; RESISTANCE; MAGNESIUM; OXIDATION; CHLORIDE; XPS;
D O I
10.1016/j.mtchem.2024.102487
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, the influence of duplex phase evolution of Mg-xLi-6Zn-2Y alloy regulated by Li micro-alloying before and after rolling deformation on corrosion behavior was investigated. The increase in Li content leads to a typical transformation of the duplex phase structure in the as-cast Mg-Li-Zn-Y alloys, and accompanied by the precipitation of the W-phase and MgLiZn phases. These second phase particles had higher potential than alpha-Mg and beta-Li matrix, thereby inducing the micro-galvanic corrosion of adjacent matrix. However, the corrosion resistance of as-cast alloy was significantly improved after rolling treatment, primarily attributed to the reduction of local cathode/anode ratio by grain refinement and fragmentation of the second phase, as well the corrosion products films composed of Y2O3 and Zn (OH)2 providing protection for the matrix.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Xi G.Q., Mou Y., Ma Y.L., Zhao X.H., Xiong J., Ma K., Wang J.F., Effect of volume fraction of 18R-LPSO phase on corrosion resistance of Mg-Zn-Y alloys, Trans. Nonferrous Metals Soc. China, 33, pp. 454-466, (2023)
  • [2] Liu B., Yang J., Zhang X.Y., Yang Q., Zhan J.S., Li X.Q., Development and application of magnesium alloy parts for automotive OEMs: a review, J. Magnesium Alloys, 11, pp. 15-47, (2023)
  • [3] Zhang Y., Zhang J., Wu G., Liu W., Zhang L., Ding W., Microstructure and tensile properties of as-extruded Mg-Li-Zn-Gd alloys reinforced with icosahedral quasicrystal phase, Mater. Des., 66, pp. 162-168, (2015)
  • [4] Zhang Z., Zhang J., Xie J., Liu S., Fu W., Wu R., Developing a Mg alloy with ultrahigh room temperature ductility via grain boundary segregation and activation of non-basal slips, Int. J. Plast., 162, (2023)
  • [5] Cao F., Zhang J., Ding X., Xue G., Liu S., Sun C., Su R., Teng X., Mechanical properties and microstructural evolution in a superlight Mg-6.4Li-3.6Zn-0.37Al-0.36Y alloy processed by multidirectional forging and rolling, Mater. Sci. Eng., A, 760, pp. 377-393, (2019)
  • [6] Li C.Q., Xu D.K., Zhang Z.R., Han E.H., Influence of the lithium content on the negative difference effect of Mg-Li alloys, J. Mater. Sci. Technol., 57, pp. 138-145, (2020)
  • [7] Ma X.C., Jin S.Y., Wu R.Z., Corrosion behavior of Mg-Li alloys: a review, Trans. Nonferrous Metals Soc. China, 31, pp. 3228-3254, (2021)
  • [8] Ravikanth Reddy C., Srinivasarao B., Development of high-strength Mg-0.5Ni-2Gd-xLi (x = 0, 1, 5, 10, 15, 25 at%) alloys with long-period stacking ordered structure through hot extrusion, J. Mater. Eng. Perform., 32, pp. 5583-5592, (2023)
  • [9] Tang S., Xin T.Z., Xu W.Q., Miskovic D., Li C.Q., Birbilis N., Ferry M., The composition-dependent oxidation film formation in Mg-Li-Al alloys, Corrosion Sci., 187, (2021)
  • [10] Saini S.P., Kumar S., Barman R., Dixit A., Kumar V., Oxidation study of Mg-Li-Al based alloy, Mater. Today Proc., 3, pp. 3035-3044, (2016)