Classification of Time Signals Using Machine Learning Techniques

被引:0
作者
Jadoon, Ishfaq Ahmad [1 ]
Logofatu, Doina [1 ]
Islam, Mohammad Nahin [1 ]
机构
[1] Frankfurt Univ Appl Sci, Frankfurt, Germany
来源
24TH INTERNATIONAL CONFERENCE ON ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2023 | 2023年 / 1826卷
关键词
Machine Learning; Deep Learning; Supervised Learning; Neural Network; Multi-Layer Perceptron (MLP); Hilbert-Huang Transform (HHT); Empirical Mode Decomposition (EMD); Object Classification; EMPIRICAL MODE DECOMPOSITION;
D O I
10.1007/978-3-031-34204-2_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study presents a comprehensive overview of the classification of time signals over a variety of objects. Signals were initially processed using the Hilbert-Huang transform, followed by supervised machine learning and deep learning to classify objects. Multilayer Perceptron (MLP) and Support Vector Machines (SVM) were used for sound discrimination. The result is a program that effectively detects and classifies time signals as "Object 1" or "Not Object 1" (i.e., Object #2 and Object 3).
引用
收藏
页码:85 / 96
页数:12
相关论文
共 18 条
[1]  
Abe S, 2010, ADV PATTERN RECOGNIT, P1, DOI 10.1007/978-1-84996-098-4
[2]  
Aery M.K., 2017, A Review on Machine Learning: Trends and Future Prospects
[3]   Empirical mode decomposition based on Fourier transform and band-pass filter [J].
Chen, Zheng-Shou ;
Rhee, Shin Hyung ;
Liu, Gui-Lin .
INTERNATIONAL JOURNAL OF NAVAL ARCHITECTURE AND OCEAN ENGINEERING, 2019, 11 (02) :939-951
[4]  
Frost J., 2020, Statistics By Jim. Overfitting Regression Models: Problems, Detection, and Avoidance, V1, P10
[5]  
IBM, Artificial intelligence
[6]  
Ju QC, 2022, COMMUN MATH SCI, V20, P1637, DOI 10.4310/CMS.2022.v20.n6.a8
[7]  
Leite T.M., 2018, Medium, Neural Networks, Multilayer Perceptron and the Backpropagation Algorithm
[8]  
Nicholson C, BEGINNERS GUIDE MULT
[9]  
Peltarion, Categorical crossentropy
[10]  
SAMUEL AL, 1959, IBM J RES DEV, V3, P211, DOI 10.1147/rd.441.0206