Terahertz Surface Plasmon Refractometry of Composite Graphene Nanoparticle Films

被引:0
作者
Gerasimov, Vasily V. [1 ,2 ]
Khasanov, Ildus Sh. [3 ]
Kukotenko, Valeria D. [1 ]
Lemzyakov, Alexey G. [1 ,4 ]
Ivanov, Artem I. [5 ]
Antonova, Irina V. [5 ,6 ]
Cherevko, Aleksandr G. [7 ]
机构
[1] Russian Acad Sci, Budker Inst Nucl Phys, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Dept Phys, Novosibirsk, Russia
[3] Russian Acad Sci, Sci & Technol Ctr Unique Instrumentat, Moscow 117342, Russia
[4] Synchrotron Radiat Facil Siberian Circular Photon, Koltsov 630090, Russia
[5] Russian Acad Sci, Rzhanov Inst Semicond Phys, Siberian Branch, Novosibirsk 630090, Russia
[6] Novosibirsk State Tech Univ, Dept Semicond Devices & Microelect, Novosibirsk, Russia
[7] Dept Siberian State Univ Telecommun & Informat Sci, Novosibirsk, Russia
关键词
Graphene; Terahertz radiation; Optical surface waves; Surface waves; Optical refraction; Optical films; Optical interferometry; Semiconductor device measurement; Optical attenuators; Optical variables measurement; Conductivity; free-electron lasers; graphene nanocomposites; interferometers; nanoparticles; plasmonic integrated circuits; surface plasmon polaritons (SPPs); terahertz (THz) radiation; 6G systems; REFRACTIVE-INDEX; PROPAGATION; POLARITONS; EXCITATION; RESONANCE; METALS; WAVE;
D O I
10.1109/TTHZ.2024.3485870
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene is one of the most promising materials for terahertz (THz) plasmonics. Composite layers composed of graphene nanoparticles are easier to fabricate, and their composition variability allows for the customization of desired optical surface characteristics. This study is the first to apply THz surface plasmon refractometry methods to investigate composite films of graphene nanoparticles (with poly-34-ethylenedioxythiophene/ polystyrene sulfonate additive) with thicknesses of 35 and 400 nm. The Novosibirsk free-electron laser, generating monochromatic wavelength-tunable coherent radiation, was used as a THz radiation source. The measurement of the effective dielectric permittivity of the layers at wavelengths of 141 and 197 mu m indicated their good conductive properties. Results of the comparison of permittivity for different thicknesses of graphene layers have revealed a complex mechanism of conductivity of the composite material, which differs significantly from the Drude model estimations. So, further thorough experimental research of this material is required. The main results suggest the potential application of composite graphene films hundreds of nanometers thick in plasmonic integrated circuits and THz frequency range communication lines.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 49 条
[1]   Terahertz Band Communication: An Old Problem Revisited and Research Directions for the Next Decade [J].
Akyildiz, Ian F. ;
Han, Chong ;
Hu, Zhifeng ;
Nie, Shuai ;
Jornet, Josep Miquel .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (06) :4250-4285
[2]   Graphene: Hexagonal Boron Nitride Composite Films with Low-Resistance for Flexible Electronics [J].
Antonova, Irina, V ;
Shavelkina, Marina B. ;
Ivanov, Artem I. ;
Poteryaev, Dmitriy A. ;
Nebogatikova, Nadezhda A. ;
Buzmakova, Anna A. ;
Soots, Regina A. ;
Katarzhis, Vladimir A. .
NANOMATERIALS, 2022, 12 (10)
[3]   Graphene Flakes for Electronic Applications: DC Plasma Jet-Assisted Synthesis [J].
Antonova, Irina V. ;
Shavelkina, Marina B. ;
Ivanov, Artem I. ;
Soots, Regina A. ;
Ivanov, Peter P. ;
Bocharov, Alexey N. .
NANOMATERIALS, 2020, 10 (10) :1-14
[4]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[5]   Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens [J].
Chen, Hao ;
Wu, Zhixiang ;
Li, Zeyu ;
Luo, Zhenfei ;
Jiang, Xue ;
Wen, Zhongquan ;
Zhu, Liguo ;
Zhou, Xun ;
Li, Hua ;
Shang, Zhengguo ;
Zhang, Zhihai ;
Zhang, Kun ;
Liang, Gaofeng ;
Jiang, Senlin ;
Du, Lianghui ;
Chen, Gang .
OPTICS EXPRESS, 2018, 26 (23) :29817-29825
[6]   Plasmonic behavior of III-V semiconductors in far-infrared and terahertz range [J].
Chochol, Jan ;
Postava, Kamil ;
Cada, Michael ;
Vanwolleghem, Mathias ;
Micica, Martin ;
Halagacka, Lukys ;
Lampin, Jean-Francois ;
Pistora, Jaromir .
JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2017, 13
[7]   Terahertz conductivity characterization of nanostructured graphene-like films for optoelectronic applications [J].
Dadrasnia, Ehsan ;
Lamela, Horacio .
JOURNAL OF NANOPHOTONICS, 2015, 9
[8]  
Denisultanov AK, 2014, PR ELECTROMAGN RES S, P2022
[9]   Planar Michelson Interferometer Using Terahertz Surface Plasmons [J].
Gerasimov, V. V. ;
Nikitin, A. K. ;
Lemzyakov, A. G. .
INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2023, 66 (03) :423-434
[10]   A way to determine the permittivity of metallized surfaces at terahertz frequencies [J].
Gerasimov, V. V. ;
Knyazev, B. A. ;
Nikitin, A. K. ;
Zhizhin, G. N. .
APPLIED PHYSICS LETTERS, 2011, 98 (17)