This work proposed a compact thermoelectric cooler (TEC)-controlled MEMS gyroscope system aimed at mitigating bias and scale factor drift. The system was implemented by encapsulating the MEMS gyroscope chip and TEC device into an LCC package. In contrast to conventional oven-controlled gyroscopes, the constant temperature point of gyroscopes using TEC can be within the fluctuation range of ambient temperature. This design offers significant benefits, including reduced power consumption, shortened startup time, and enhanced Q factor. Finite-element method (FEM) simulation were developed, and the sensor's improvement was validated. Experimental evaluations were conducted within a temperature range spanning from -40 degrees C to +60 degrees C. The results indicated that setting the constant temperature at 41 degrees C yields an overall power consumption of 1.1 W, a startup time of 4.2 s, and a Q-factor of 49.5k.