Physics-informed Neural Implicit Flow neural network for parametric PDEs

被引:0
|
作者
Xiang, Zixue [1 ]
Peng, Wei [2 ,3 ]
Yao, Wen [2 ,3 ]
Liu, Xu [2 ,3 ]
Zhang, Xiaoya [2 ,3 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Peoples R China
[2] Chinese Acad Mil Sci, Def Innovat Inst, Beijing 100071, Peoples R China
[3] Intelligent Game & Decis Lab, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Physics-informed Neural Network; Partial differential equations; Neural Implicit Flow; Kolmogorov flow; EQUATION;
D O I
10.1016/j.neunet.2025.107166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Physics-informed Neural Network (PINN) has been a popular method for solving partial differential equations (PDEs) due to its flexibility. However, PINN still faces challenges in characterizing spatio-temporal correlations when solving parametric PDEs due to network limitations. To address this issue, we propose a Physics-Informed Neural Implicit Flow (PINIF) framework, which enables a meshless low-rank representation of the parametric spatio-temporal field based on the expressiveness of the Neural Implicit Flow (NIF), enabling a meshless low-rank representation. In particular, the PINIF framework utilizes the Polynomial Chaos Expansion (PCE) method to quantify the uncertainty in the presence of noise, allowing for a more robust representation of the solution. In addition, PINIF introduces a novel transfer learning framework to speedup the inference of parametric PDEs significantly. The performance of PINIF and PINN is compared on various PDEs especially with variable coefficients and Kolmogorov flow. The comparative results indicate that PINIF outperforms PINN in terms of accuracy and efficiency.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] PhyGNNet: Solving spatiotemporal PDEs with Physics-informed Graph Neural Network
    Jiang, Longxiang
    Wang, Liyuan
    Chu, Xinkun
    Xiao, Yonghao
    Zhang, Hao
    2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023, 2023, : 143 - 147
  • [2] Modeling parametric uncertainty in PDEs models via Physics-Informed Neural Networks
    Panahi, Milad
    Porta, Giovanni Michele
    Riva, Monica
    Guadagnini, Alberto
    ADVANCES IN WATER RESOURCES, 2025, 195
  • [3] Stiff-PDEs and Physics-Informed Neural Networks
    Sharma, Prakhar
    Evans, Llion
    Tindall, Michelle
    Nithiarasu, Perumal
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 2929 - 2958
  • [4] Stiff-PDEs and Physics-Informed Neural Networks
    Prakhar Sharma
    Llion Evans
    Michelle Tindall
    Perumal Nithiarasu
    Archives of Computational Methods in Engineering, 2023, 30 (5) : 2929 - 2958
  • [5] PPINN: Parareal physics-informed neural network for time-dependent PDEs
    Meng, Xuhui
    Li, Zhen
    Zhang, Dongkun
    Karniadakis, George Em
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 370 (370)
  • [6] Physics-informed neural network simulation of thermal cavity flow
    Fowler, Eric
    McDevitt, Christopher J.
    Roy, Subrata
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Solving PDEs on spheres with physics-informed convolutional neural networks
    Lei, Guanhang
    Lei, Zhen
    Shi, Lei
    Zeng, Chenyu
    Zhou, Ding-Xuan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2025, 74
  • [8] Optimal control of PDEs using physics-informed neural networks
    Mowlavi, Saviz
    Nabi, Saleh
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [9] NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs
    Wang, Yifan
    Zhong, Linlin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 496
  • [10] Spectral physics-informed neural network for transient pipe flow simulation
    Tjuatja, Vincent
    Keramat, Alireza
    Rahmanshahi, Mostafa
    Duan, Huan-Feng
    WATER RESEARCH, 2025, 279