Laser powder bed fusion of mixed aluminum powders: Microstructure features and mechanical properties

被引:0
|
作者
Rogachev, S. O. [1 ]
Fedorenko, L. V. [1 ]
Naumova, E. A. [1 ]
Tabachkova, N. Yu. [1 ]
Bazhenov, V. E. [1 ]
Chernyshikhin, S. V. [1 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Aluminum alloy; Metal powders; Laser powder bed fusion; Microstructure; Mechanical properties; BOUNDARY WETTING TRANSITION;
D O I
10.1016/j.matlet.2025.138404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aluminum alloy was synthesized by the LBBF method from a mixture of different secondary aluminum powders containing Mg, Zn, Fe, Ce, Si, Co and Ni alloying elements with their total amount of about 6 wt%. The annealing treatment of the alloy at 200 degrees C relieved high internal stress, which allowed to achieve an excellent combination of strength and plasticity. Depending on the scanning speed, the tensile strength and relative elongation varied from 266 to 324 MPa and from 16 to 19 %, respectively. Such properties were the result of the ultra-fine cellular microstructure formation, with the cell boundaries formed by chains of nanosized aluminide particles. Detailed studies of the heterogeneity of the microstructure and its morphology were carried out. High thermal stability of the synthesized material was established.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Microstructure and mechanical properties of Zr-modified aluminum alloy 5083 manufactured by laser powder bed fusion
    Zhou, Le
    Hyer, Holden
    Park, Sharon
    Pan, Hao
    Bai, Yuanli
    Rice, Katherine P.
    Sohn, Yongho
    ADDITIVE MANUFACTURING, 2019, 28 : 485 - 496
  • [2] Microstructure and mechanical properties of rene 41 alloy manufactured by laser powder bed fusion
    Atabay, Sila Ece
    Sanchez-Mata, Oscar
    Muniz-Lerma, Jose Alberto
    Gauvin, Raynald
    Brochu, Mathieu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 773 (773):
  • [3] Compositionally graded titanium to aluminum processed by laser powder bed fusion process: Microstructure evolution and mechanical properties
    Daram, Phuangphaga
    Singh, Alok
    Hiroto, Takanobu
    Kitashima, Tomonori
    Watanabe, Makoto
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 903
  • [4] Microstructure and mechanical properties of Haynes 282 superalloy produced by laser powder bed fusion
    Shaikh, Abdul Shaafi
    Schulz, Fiona
    Minet-Lallemand, Kevin
    Hryha, Eduard
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [5] Microstructure and Mechanical Properties of CoFeNiCuMn High-Entropy Alloys Produced by Laser Powder Bed Fusion
    Altinok, Sertac
    Buscher, Martin
    Beckers, Marco
    Kalay, Yunus Eren
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2024, 13 (04) : 711 - 729
  • [6] Effect of Mo on the morphology, microstructure and mechanical properties of NbTa0.5TiMox refractory high entropy alloy fabricated by laser powder bed fusion using elemental mixed powders
    Wang, Fei
    Yuan, Tiechui
    Li, Ruidi
    Lin, Shiqi
    Niu, Pengda
    Cristino, Valentino
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 111
  • [7] Predicting the chemical homogeneity in laser powder bed fusion (LPBF) of mixed powders after remelting
    Li, Huikai
    Brodie, Erin G.
    Hutchinson, Christopher
    ADDITIVE MANUFACTURING, 2023, 65
  • [8] Microstructure and mechanical properties of β-21S Ti alloy fabricated through laser powder bed fusion
    Macias-Sifuentes, Maria Argelia
    Xu, Chao
    Sanchez-Mata, Oscar
    Kwon, Sun Yong
    Atabay, Sila Ece
    Muniz-Lerma, Jose Alberto
    Brochu, Mathieu
    PROGRESS IN ADDITIVE MANUFACTURING, 2021, 6 (03) : 417 - 430
  • [9] Influence of hatch distance on processing, microstructure and mechanical properties of AlMgScZr alloy fabricated by laser powder bed fusion
    Li, Xiang
    Liu, Yunzhong
    Zhou, Zhiguang
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 81 : 78 - 91
  • [10] Microstructure and mechanical properties of β-21S Ti alloy fabricated through laser powder bed fusion
    Maria Argelia Macias-Sifuentes
    Chao Xu
    Oscar Sanchez-Mata
    Sun Yong Kwon
    Sila Ece Atabay
    Jose Alberto Muñiz-Lerma
    Mathieu Brochu
    Progress in Additive Manufacturing, 2021, 6 : 417 - 430