共 32 条
A multidimensional assessment of in-host fitness costs of drug resistance in the opportunistic fungal pathogen Candida glabrata
被引:0
|作者:
Arastehfar, Amir
[1
,2
,3
]
Daneshnia, Farnaz
[1
,2
,4
]
Hovhannisyan, Hrant
[5
,6
]
Cabrera, Nathaly
[1
]
Ilkit, Macit
[7
]
Desai, Jigar, V
[1
,8
]
Gabaldon, Toni
[5
,6
,9
,10
]
Shor, Erika
[1
,11
]
Perlin, David S.
[1
,11
]
机构:
[1] Hackensack Meridian Hlth, Ctr Discovery & Innovat, Nutley, NJ 07110 USA
[2] Massachusetts Gen Hosp, Div Infect Dis, Boston, MA 02114 USA
[3] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[4] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, NL-1090 GB Amsterdam, Netherlands
[5] Supercomp Ctr BSC CNS, Life Sci Programme, Barcelona 08034, Spain
[6] Barcelona Inst Sci & Technol, Inst Res Biomed IRB Barcelona, Barcelona 08028, Spain
[7] Univ Cukurova, Fac Med, Dept Microbiol, Div Mycol, TR-01330 Adana, Turkiye
[8] Georgetown Univ, Lombardi Comprehens Canc Ctr, Washington, DC 20057 USA
[9] Catalan Inst Res & Adv Studies, Barcelona, Spain
[10] Ctr Invest Biomed RED Enfermedades Infecciosas, Madrid, Spain
[11] Hackensack Meridian Sch Med, Dept Med Sci, Nutley, NJ 07110 USA
关键词:
Candida glabrata;
fluconazole resistant;
echinocandin resistant;
multidrug resistant;
fitness cost;
intracellular replication;
gut colonization;
systemic infection;
ERYTHROMYCIN RESISTANCE;
ECHINOCANDIN RESISTANCE;
ANTIBIOTIC-RESISTANCE;
ESCHERICHIA-COLI;
MUTATIONS;
CONSUMPTION;
ADHERENCE;
SEQUENCE;
IMPACT;
BLOOD;
D O I:
10.1093/femsyr/foae035
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Drug-resistant microbes typically carry mutations in genes involved in critical cellular functions and may therefore be less fit under drug-free conditions than susceptible strains. Candida glabrata is a prevalent opportunistic yeast pathogen with a high rate of fluconazole resistance (FLZR), echinocandin resistance (ECR), and multidrug resistance (MDR) relative to other Candida. However, the fitness of C. glabrata MDR isolates, particularly in the host, is poorly characterized, and studies of FLZR isolate fitness have produced contradictory findings. Two important host niches for C. glabrata are macrophages, in which it survives and proliferates, and the gut. Herein, we used a collection of clinical and lab-derived C. glabrata isolates to show that FLZR C. glabrata isolates are less fit inside macrophages than susceptible isolates and that this fitness cost is reversed by acquiring ECR mutations. Interestingly, dual-RNAseq revealed that macrophages infected with drug-resistant isolates mount an inflammatory response whereas intracellular drug-resistant cells downregulate processes required for in-host adaptation. Furthermore, drug-resistant isolates were outcompeted by their susceptible counterparts during gut colonization and in infected kidneys, while showing comparable fitness in the spleen. Collectively, our study shows that macrophage-rich organs, such as the spleen, favor the retention of MDR isolates of C. glabrata. The fitness of drug-resistant strains of fungal pathogen Candida glabrata depends on the host niche and is relatively high in the spleen, which may thus act as a host reservoir for drug-resistant C. glabrata mutants.
引用
收藏
页数:16
相关论文