Effects of phosphorus availabilities on growth and yield of foxtail millet: insights from high-throughput phenotyping platforms

被引:0
|
作者
Tharanya Murugesan [1 ]
Sivasakthi Kaliamoorthy [1 ]
Sunita Choudhary [1 ]
Keerthi Vysyaraju [1 ]
Devan Sai Gudela [2 ]
Annepu Anusha [1 ]
Kommireddypally Sowmya Goud [2 ]
Sara Loftus [1 ]
Michaela A. Dippold [2 ]
Suresh Kanuri [3 ]
Rekha Baddam [4 ]
Alison Baker [4 ]
S. Antony Ceasar [1 ]
Jana Kholova [1 ]
机构
[1] International Crops Research Institute for the Semi-Arid Tropics (ICRISAT),Geo
[2] Crops Physiology Laboratory,Biosphere Interactions, Department of Geosciences and Department of Biology
[3] Centurion University of Technology and Management (CUTM),Centre for Plant Sciences and School of Molecular and Cellular Biology
[4] Professor Jayashankar Telangana State Agricultural University,Department of Information Technologies, Faculty of Economics and Management
[5] University of Tuebingen,undefined
[6] University of Leeds,undefined
[7] Department of Biosciences,undefined
[8] Rajagiri College of Social Sciences,undefined
[9] Czech University of Life Sciences,undefined
[10] Prague,undefined
关键词
Foxtail millet; Grain P content; High-throughput phenotyping platforms; Nutrient deficiency; Phosphorus stress; Phosphorus use efficiency; Resource poor soil;
D O I
10.1007/s00425-025-04672-7
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Integrating dynamic high-throughput phenotyping and genetic analysis to monitor growth variation in foxtail millet
    Wang, Zhenyu
    Hao, Jiongyu
    Shi, Xiaofan
    Wang, Qiaoqiao
    Zhang, Wuping
    Li, Fuzhong
    Mur, Luis A. J.
    Han, Yuanhuai
    Hou, Siyu
    Han, Jiwan
    Sun, Zhaoxia
    PLANT METHODS, 2024, 20 (01)
  • [2] Pitfalls and potential of high-throughput plant phenotyping platforms
    Poorter, Hendrik
    Hummel, Gregoire M.
    Nagel, Kerstin A.
    Fiorani, Fabio
    von Gillhaussen, Philipp
    Virnich, Olivia
    Schurr, Ulrich
    Postma, Johannes A.
    van de Zedde, Rick
    Wiese-Klinkenberg, Anika
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [3] High-throughput phenotyping platforms for pulse crop biofortification
    Madurapperumage, Amod
    Naser, M. Z.
    Boatwright, Lucas
    Bridges, William
    Vandemark, George
    Thavarajah, Dil
    PLANTS PEOPLE PLANET, 2025, 7 (01) : 49 - 61
  • [4] Measuring growth rate in high-throughput growth phenotyping
    Blomberg, Anders
    CURRENT OPINION IN BIOTECHNOLOGY, 2011, 22 (01) : 94 - 102
  • [5] High-throughput phenotyping of rice growth traits
    Esther Lau
    Nature Reviews Genetics, 2014, 15 (12) : 778 - 778
  • [6] RGB picture vegetation indexes for High-Throughput Phenotyping Platforms (HTPPs)
    Kefauver, Shawn C.
    El-Haddad, George
    Vergara-Diaz, Omar
    Luis Arausa, Jose
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII, 2015, 9637
  • [7] Vinobot and Vinoculer: Two Robotic Platforms for High-Throughput Field Phenotyping
    Shafiekhani, Ali
    Kadam, Suhas
    Fritschi, Felix B.
    DeSouza, Guilherme N.
    SENSORS, 2017, 17 (01)
  • [8] High-Throughput Estimation of Crop Traits: A Review of Ground and Aerial Phenotyping Platforms
    Jin, Xiuliang
    Zarco-Tejada, Pablo J.
    Schmidhalter, Urs
    Reynolds, Matthew P.
    Hawkesford, Malcolm J.
    Varshney, Rajeev K.
    Yang, Tao
    Nie, Chengwei
    Li, Zhenhai
    Ming, Bo
    Xiao, Yonggui
    Xie, Yongdun
    Li, Shaokun
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (01) : 200 - 231
  • [9] Estimation of soybean yield based on high-throughput phenotyping and machine learning
    Li, Xiuni
    Chen, Menggen
    He, Shuyuan
    Xu, Xiangyao
    He, Lingxiao
    Wang, Li
    Gao, Yang
    Tang, Fenda
    Gong, Tao
    Wang, Wenyan
    Xu, Mei
    Liu, Chunyan
    Yu, Liang
    Liu, Weiguo
    Yang, Wenyu
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [10] High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage
    Jin Sun
    Jesse A. Poland
    Suchismita Mondal
    José Crossa
    Philomin Juliana
    Ravi P. Singh
    Jessica E. Rutkoski
    Jean-Luc Jannink
    Leonardo Crespo-Herrera
    Govindan Velu
    Julio Huerta-Espino
    Mark E. Sorrells
    Theoretical and Applied Genetics, 2019, 132 : 1705 - 1720