Retrieving Aerosol Optical Depth over Land from Landsat-8 Satellite Images with the Aid of Cloud Shadows

被引:0
作者
Zhu, Jingmiao [1 ,2 ]
Qiao, Congcong [1 ,3 ]
Duan, Minzheng [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Atmospher & Phys, Beijing 100029, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[3] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
aerosol; optical depth; cloud shadow; DISCRETE-ORDINATE-METHOD; TROPOSPHERIC AEROSOL; ALGORITHM; MISSION; SCATTERING; POLLUTION; NETWORK; AERONET; IMPACT; POLARIZATION;
D O I
10.3390/rs17020176
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Clouds and their shadows can be clearly identified from high-spatial-resolution satellite images, such as those provided by Landsat-8/9 with a spatial resolution of approximately 30 m and Sentinel-2 with a spatial resolution of around 20 m. Consequently, the difference between satellite measurements over cloud-shadowed and nearby illuminated pixels can be used to derive the aerosol optical depth (AOD), even in the absence of detailed surface optical properties. Based on this assumption, an algorithm for AOD retrieval over land is developed and tested using Landsat-8/9 images containing scattered clouds over Xuzhou, China, and Dalanzadgad, Mongolia. The retrieved AODs are compared against MODIS and ground-based sun photometer measurements. The findings reveal that, in cloudy regions, over 90% of the discrepancies between the AODs retrieved using the cloud-shadow method and ground-based measurements fall within 0.05 +/- 0.20 AOD. This cloud-shadow algorithm represents a valuable complement to existing satellite aerosol retrieval methods, particularly in sparsely cloud-covered areas.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Retrieval of Aerosol Optical Depth from the Himawari-8 Advanced Himawari Imager data: Application over Beijing in the summer of 2016
    Wang, Lei
    Yu, Chao
    Cai, Kun
    Zheng, Fengbin
    Li, Shenshen
    ATMOSPHERIC ENVIRONMENT, 2020, 241
  • [42] Retrieval of Atmospheric Aerosol Optical Depth From AVHRR Over Land With Global Coverage Using Machine Learning Method
    Tian, Xiaoqing
    Gao, Ling
    Li, Jun
    Chen, Lin
    Ren, Jingjing
    Li, Chengcai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010
    Hsu, N. C.
    Gautam, R.
    Sayer, A. M.
    Bettenhausen, C.
    Li, C.
    Jeong, M. J.
    Tsay, S. -C.
    Holben, B. N.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (17) : 8037 - 8053
  • [44] A HIGH-RESOLUTION GLOBAL DATASET OF AEROSOL OPTICAL DEPTH OVER LAND FROM MODIS DATA
    Sun, Lin
    Wei, Jing
    Jia, Chen
    Yang, Yikun
    Zhou, Xueying
    Gan, Ping
    Liu, Fangwei
    Jia, Shangfeng
    Li, Ruibo
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5729 - 5732
  • [45] Aerosol optical depth retrieval from GOES-8: Uncertainty study and retrieval validation over South America
    Knapp, KR
    Vonder Haar, TH
    Kaufman, YJ
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D7-8)
  • [46] Composite Aerosol Optical Depth Mapping over Northeast Asia from GEO-LEO Satellite Observations
    Ahn, Soi
    Chung, Sung-Rae
    Oh, Hyun-Jong
    Chung, Chu-Yong
    REMOTE SENSING, 2021, 13 (06)
  • [47] Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction
    Kim, Mijin
    Kim, Jhoon
    Wong, Man Sing
    Yoon, Jongmin
    Lee, Jaehwa
    Wu, Dong
    Chan, P. W.
    Nichol, Janet E.
    Chung, Chu-Yong
    Ou, Mi-Lim
    REMOTE SENSING OF ENVIRONMENT, 2014, 142 : 176 - 187
  • [48] Relative contributions of component-segregated aerosols to trends in aerosol optical depth over land (2007-2019): Insights from CAMS aerosol reanalysis
    Zhao, Hengheng
    Gui, Ke
    Yao, Wenrui
    Shang, Nanxuan
    Zhang, Xutao
    Liang, Yuanxin
    Liu, Yurun
    Li, Lei
    Zheng, Yu
    Wang, Zhili
    Wang, Hong
    Sun, Junying
    Che, Huizheng
    Zhang, Xiaoye
    ATMOSPHERIC ENVIRONMENT, 2024, 333
  • [49] Retrieval of Aerosol Optical Depth Over North China From Polarized Satellite Observations Using Re-derived Surface Properties
    Wang, Han
    Zhao, Meiru
    Yang, Leiku
    Liu, Pei
    Du, Weibing
    Sun, Xiaobing
    EARTH AND SPACE SCIENCE, 2019, 6 (12) : 2241 - 2250
  • [50] Refining aerosol optical depth retrievals over land by constructing the relationship of spectral surface reflectances through deep learning: Application to Himawari-8
    Su, Tianning
    Laszlo, Istvan
    Li, Zhanqing
    Wei, Jing
    Kalluri, Satya
    REMOTE SENSING OF ENVIRONMENT, 2020, 251 (251)