Product-complete tilting complexes and Cohen-Macaulay hearts

被引:1
作者
Hrbek, Michal [1 ]
Martini, Lorenzo [2 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567, Czech Republic
[2] Univ Verona, Dipartimento Informat, Settore Matemat, Str Grazie 15 Ca Vignal, I-37134 Verona, Italy
关键词
derived category; commutative noetherian ring; cotilting complex; derived equivalence; dualizing complex; Gorenstein complex; DUALIZING COMPLEXES; TORSION PAIRS; RINGS; EQUIVALENCES;
D O I
10.4171/RMI/1500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the cotilting heart associated to a tilting complex T is a locally coherent and locally coperfect Grothendieck category (i.e., an Ind-completion of a small artinian abelian category) if and only if T is product-complete. We then apply this to the specific setting of the derived category of a commutative noetherian ring R. If dim(R) < infinity, we show that there is a derived duality D-fg (b)(R) congruent to D-b (B)(op) between mod-R and a noetherian abelian category B if and only if R is a homomorphic image of a Cohen-Macaulay ring. Along the way, we obtain new insights about t-structures in D-fg (b)(R). In the final part, we apply our results to obtain a new characterization of the class of those finite-dimensional noetherian rings that admit a Gorenstein complex.
引用
收藏
页码:2339 / 2369
页数:31
相关论文
共 52 条
[31]   A few examples of local rings, I [J].
Nishimura, Jun-ichi .
KYOTO JOURNAL OF MATHEMATICS, 2012, 52 (01) :51-87
[32]  
Pavon S, 2021, DOC MATH, V26, P829
[33]  
Positselski L., 2021, CONFLUENTES MATH, V13, P93, DOI DOI 10.5802/CML.78
[34]   TOPOLOGICALLY SEMISIMPLE AND TOPOLOGICALLY PERFECT TOPOLOGICAL RINGS [J].
Positselski, Leonid ;
Stovicek, Jan .
PUBLICACIONS MATEMATIQUES, 2022, 66 (02) :457-540
[35]   The Tilting-Cotilting Correspondence [J].
Positselski, Leonid ;
Stovicek, Jan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (01) :191-276
[36]  
Prest M, 2009, ENCYCLOP MATH APPL, V121, P1
[37]   Realisation functors in tilting theory [J].
Psaroudakis, Chrysostomos ;
Vitoria, Jorge .
MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) :965-1028
[38]   MORITA THEORY FOR DERIVED CATEGORIES [J].
RICKARD, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 39 :436-456
[39]  
ROOS JE, 1969, LECT NOTES MATH, V92, P197
[40]   t-Structures with Grothendieck hearts via functor categories [J].
Saorin, Manuel ;
Stovicek, Jan .
SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (05)