Product-complete tilting complexes and Cohen-Macaulay hearts

被引:1
作者
Hrbek, Michal [1 ]
Martini, Lorenzo [2 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567, Czech Republic
[2] Univ Verona, Dipartimento Informat, Settore Matemat, Str Grazie 15 Ca Vignal, I-37134 Verona, Italy
关键词
derived category; commutative noetherian ring; cotilting complex; derived equivalence; dualizing complex; Gorenstein complex; DUALIZING COMPLEXES; TORSION PAIRS; RINGS; EQUIVALENCES;
D O I
10.4171/RMI/1500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the cotilting heart associated to a tilting complex T is a locally coherent and locally coperfect Grothendieck category (i.e., an Ind-completion of a small artinian abelian category) if and only if T is product-complete. We then apply this to the specific setting of the derived category of a commutative noetherian ring R. If dim(R) < infinity, we show that there is a derived duality D-fg (b)(R) congruent to D-b (B)(op) between mod-R and a noetherian abelian category B if and only if R is a homomorphic image of a Cohen-Macaulay ring. Along the way, we obtain new insights about t-structures in D-fg (b)(R). In the final part, we apply our results to obtain a new characterization of the class of those finite-dimensional noetherian rings that admit a Gorenstein complex.
引用
收藏
页码:2339 / 2369
页数:31
相关论文
共 52 条
[1]   Compactly generated t-structures on the derived category of a Noetherian ring [J].
Alonso Tarrio, Leovigildo ;
Jeremias Lopez, Ana ;
Saorin, Manuel .
JOURNAL OF ALGEBRA, 2010, 324 (03) :313-346
[2]  
BEILINSON AA, 1982, ASTERISQUE, P7
[3]   Relative homological algebra and purity in triangulated categories [J].
Beligiannis, A .
JOURNAL OF ALGEBRA, 2000, 227 (01) :268-361
[4]  
Breaz S, 2022, Arxiv, DOI arXiv:2204.01374
[5]   Ascent Properties of Auslander Categories [J].
Christensen, Lars Winther ;
Holm, Henrik .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (01) :76-108
[6]  
Gobel R., 2012, De Gruyter Exp. Math., V41
[7]  
Hartshorne R., 1966, Lecture Notes in Mathematics, V20
[8]   Intermediate rings between a local domain and its completion, II [J].
Heinzer, W ;
Rotthaus, C ;
Wiegand, S .
ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (03) :965-979
[9]   A NON-CATENARY, NORMAL, LOCAL DOMAIN [J].
HEITMANN, RC .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1982, 12 (01) :145-148
[10]   Topological endomorphism rings of tilting complexes [J].
Hrbek, Michal .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (06)