A LOCKING-FREE REDUCED-ORDER MODEL FOR SOLVING THE ELASTIC WAVE EQUATION

被引:0
作者
Wang, Lu [1 ]
Xu, Youcai [1 ]
Feng, Minfu [1 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Elastic wave equation; mixed finite element method; proper orthogonal decomposition; locking free; implicit scheme; reduced-order model; FINITE-ELEMENT-METHOD; PROPER ORTHOGONAL DECOMPOSITION; DISCONTINUOUS GALERKIN METHOD; PROPAGATION; ELASTODYNAMICS; APPROXIMATIONS; DIFFERENCE;
D O I
10.4208/ijnam2025-1014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new locking-free mixed full-order model (FOM) for solving the elastic wave equation is studied, and then a locking-free reduced-order model (ROM) based on the proper orthogonal decomposition (POD) technique is constructed, which greatly improves solving efficiency compared to FOM while maintaining the locking-free. Theoretical analysis of semi discrete and fully discrete schemes for the FOM and the ROM are also presented. Some numerical experiments verify the theoretical analysis results.
引用
收藏
页码:307 / 339
页数:33
相关论文
共 29 条
[1]  
Arnold D. N., 1984, Calcolo, V21, P337, DOI 10.1007/BF02576171
[2]   MIXED METHODS FOR ELASTODYNAMICS WITH WEAK SYMMETRY [J].
Arnold, Douglas N. ;
Lee, Jeonghun J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) :2743-2769
[3]   A new family of mixed finite elements for the linear elastodynamic problem [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :2109-2132
[4]  
Bécache E, 2001, J COMPUT ACOUST, V9, P1175, DOI 10.1016/S0218-396X(01)00096-6
[5]   THE PROPER ORTHOGONAL DECOMPOSITION IN THE ANALYSIS OF TURBULENT FLOWS [J].
BERKOOZ, G ;
HOLMES, P ;
LUMLEY, JL .
ANNUAL REVIEW OF FLUID MECHANICS, 1993, 25 :539-575
[6]  
Brezzi F., 1991, COMPUTATIONAL MATH, V15
[7]   A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions [J].
Cowsar, LC ;
Dupont, TF ;
Wheeler, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (02) :492-504
[8]   The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements [J].
Dauksher, W ;
Emery, AF .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 188 (1-3) :217-233
[9]   The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion [J].
De Basabe, Jonas D. ;
Sen, Mrinal K. ;
Wheeler, Mary F. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 175 (01) :83-93
[10]   SUPERCONVERGENCE FOR A MIXED FINITE-ELEMENT METHOD FOR ELASTIC WAVE-PROPAGATION IN A PLANE DOMAIN [J].
DOUGLAS, J ;
GUPTA, CP .
NUMERISCHE MATHEMATIK, 1986, 49 (2-3) :189-202