Data-Driven Feedback Linearization Using the Koopman Generator

被引:0
|
作者
Gadginmath, Darshan [1 ]
Krishnan, Vishaal [2 ]
Pasqualetti, Fabio [1 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Generators; Vectors; Nonlinear systems; Dictionaries; Control systems; Aerospace electronics; Data-driven control; feedback linearization; geometric control; Koopman operator; OPERATOR; SYSTEMS;
D O I
10.1109/TAC.2024.3417188
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article contributes a theoretical framework for data-driven feedback linearization of nonlinear control-affine systems. We unify the traditional geometric perspective on feedback linearization with an operator-theoretic perspective involving the Koopman operator. We first show that if the distribution of the control vector field and its repeated Lie brackets with the drift vector field is involutive, then there exists an output and a feedback control law for which the Koopman generator is finite-dimensional and locally nilpotent. We use this connection to propose a data-driven algorithm 'Koopman generator-based feedback linearization (KGFL)' for feedback linearization of single-input systems. Particularly, we use experimental data to identify the state transformation and control feedback from a dictionary of functions for which feedback linearization is achieved in a least-squares sense. We also propose a single-step data-driven formula which can be used to compute the linearizing transformations. When the system is feedback linearizable and the chosen dictionary is complete, our data-driven algorithm provides the same solution as model-based feedback linearization. Finally, we provide numerical examples for the data-driven algorithm and compare it with model-based feedback linearization. We also numerically study the effect of the richness of the dictionary and the size of the dataset on the effectiveness of feedback linearization.
引用
收藏
页码:8844 / 8851
页数:8
相关论文
共 50 条
  • [21] Data-Driven Saturated State Feedback Design for Polynomial Systems Using Noisy Data
    Madeira, Diego de S.
    Correia, Wilkley B.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (11) : 7932 - 7939
  • [22] Kernel Learning for Data-Driven Spectral Analysis of Koopman Operators
    Takeishi, Naoya
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 956 - 971
  • [23] Data-driven acoustic control of a spherical bubble using a Koopman linear quadratic regulator
    Gibson, Andrew J.
    Yee, Xin C.
    Calvisi, Michael L.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 156 (01) : 229 - 243
  • [24] Data-driven discovery of Koopman eigenfunctions for control
    Kaiser, Eurika
    Kutz, J. Nathan
    Brunton, Steven L.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [25] Optimal Control of Quadrotor Attitude System Using Data-driven Approximation of Koopman Operator
    Zheng, Ketong
    Huang, Peng
    Fettweis, Gerhard P.
    IFAC PAPERSONLINE, 2023, 56 (02): : 834 - 840
  • [26] Active Learning of Dynamics for Data-Driven Control Using Koopman Operators
    Abraham, Ian
    Murphey, Todd D.
    IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (05) : 1071 - 1083
  • [27] An Improved Koopman-MPC Framework for Data-Driven Modeling and Control of Soft Actuators
    Wang, Jiajin
    Xu, Baoguo
    Lai, Jianwei
    Wang, Yifei
    Hu, Cong
    Li, Huijun
    Song, Aiguo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (02) : 616 - 623
  • [28] Koopman-Operator-Based Robust Data-Driven Control for Wheeled Mobile Robots
    Ren, Chao
    Jiang, Hongjian
    Li, Chunli
    Sun, Weichao
    Ma, Shugen
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (01) : 461 - 472
  • [29] Data-driven linearization of dynamical systems
    Haller, George
    Kaszas, Balint
    NONLINEAR DYNAMICS, 2024, 112 (21) : 18639 - 18663
  • [30] SE(3) Koopman-MPC: Data-driven Learning and Control of Quadrotor UAVs
    Narayanan, Sriram S. K. S.
    Tellez-Castro, Duvan
    Sutavani, Sarang
    Vaidya, Umesh
    IFAC PAPERSONLINE, 2023, 56 (03): : 607 - 612