Data-Driven Feedback Linearization Using the Koopman Generator

被引:0
|
作者
Gadginmath, Darshan [1 ]
Krishnan, Vishaal [2 ]
Pasqualetti, Fabio [1 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Generators; Vectors; Nonlinear systems; Dictionaries; Control systems; Aerospace electronics; Data-driven control; feedback linearization; geometric control; Koopman operator; OPERATOR; SYSTEMS;
D O I
10.1109/TAC.2024.3417188
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article contributes a theoretical framework for data-driven feedback linearization of nonlinear control-affine systems. We unify the traditional geometric perspective on feedback linearization with an operator-theoretic perspective involving the Koopman operator. We first show that if the distribution of the control vector field and its repeated Lie brackets with the drift vector field is involutive, then there exists an output and a feedback control law for which the Koopman generator is finite-dimensional and locally nilpotent. We use this connection to propose a data-driven algorithm 'Koopman generator-based feedback linearization (KGFL)' for feedback linearization of single-input systems. Particularly, we use experimental data to identify the state transformation and control feedback from a dictionary of functions for which feedback linearization is achieved in a least-squares sense. We also propose a single-step data-driven formula which can be used to compute the linearizing transformations. When the system is feedback linearizable and the chosen dictionary is complete, our data-driven algorithm provides the same solution as model-based feedback linearization. Finally, we provide numerical examples for the data-driven algorithm and compare it with model-based feedback linearization. We also numerically study the effect of the richness of the dictionary and the size of the dataset on the effectiveness of feedback linearization.
引用
收藏
页码:8844 / 8851
页数:8
相关论文
共 50 条
  • [21] Robust data-driven control for nonlinear systems using the Koopman operator
    Straesser, Robin
    Berberich, Julian
    Allgower, Frank
    IFAC PAPERSONLINE, 2023, 56 (02): : 2257 - 2262
  • [22] Data-Driven Deep Learning Based Feedback Linearization of Systems with Unknown Dynamics
    Goswami, Raktim Gautam
    Krishnamurthy, Prashanth
    Khorrami, Farshad
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 66 - 71
  • [23] Data-driven linearization of dynamical systems
    Haller, George
    Kaszas, Balint
    NONLINEAR DYNAMICS, 2024, 112 (21) : 18639 - 18663
  • [24] Data-driven feedback stabilisation of nonlinear systems: Koopman-based model predictive control
    Narasingam, Abhinav
    Son, Sang Hwan
    Kwon, Joseph Sang-Il
    INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (03) : 770 - 781
  • [25] Extending Data-Driven Koopman Analysis to Actuated Systems
    Williams, Matthew O.
    Hemati, Maziar S.
    Dawson, Scott T. M.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    IFAC PAPERSONLINE, 2016, 49 (18): : 704 - 709
  • [26] Data-driven Koopman operator approach for computational neuroscience
    Marrouch, Natasza
    Slawinska, Joanna
    Giannakis, Dimitrios
    Read, Heather L.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (11-12) : 1155 - 1173
  • [27] Data-driven Estimation for a Region of Attraction for Transient Stability Using the Koopman Operator
    Zheng, Le
    Liu, Xin
    Xu, Yanhui
    Hu, Wei
    Liu, Chongru
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2023, 9 (04): : 1405 - 1413
  • [28] Data-Driven Modeling and Experimental Validation of Autonomous Vehicles using Koopman Operator
    Joglekar, Ajinkya
    Sutavani, Sarang
    Samak, Chinmay
    Samak, Tanmay
    Kosaraju, Krishna Chaitanya
    Smereka, Jonathon
    Gorsich, David
    Vaidya, Umesh
    Krovi, Venkat
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 9442 - 9447
  • [29] Data-Driven Fault Detection and Isolation for Multirotor System Using Koopman Operator
    Lee, Jayden Dongwoo
    Im, Sukjae
    Kim, Lamsu
    Ahn, Hyungjoo
    Bang, Hyochoong
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (03)
  • [30] Data-Driven Estimation of Region of Attraction Using Koopman Operator and Reverse Trajectory
    Velasco, Rober
    Boker, Almuatazbellah
    Mili, Lamine
    Abolmasoumi, Amir
    IFAC PAPERSONLINE, 2024, 58 (28): : 282 - 287