Data-Driven Feedback Linearization Using the Koopman Generator

被引:0
作者
Gadginmath, Darshan [1 ]
Krishnan, Vishaal [2 ]
Pasqualetti, Fabio [1 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Generators; Vectors; Nonlinear systems; Dictionaries; Control systems; Aerospace electronics; Data-driven control; feedback linearization; geometric control; Koopman operator; OPERATOR; SYSTEMS;
D O I
10.1109/TAC.2024.3417188
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article contributes a theoretical framework for data-driven feedback linearization of nonlinear control-affine systems. We unify the traditional geometric perspective on feedback linearization with an operator-theoretic perspective involving the Koopman operator. We first show that if the distribution of the control vector field and its repeated Lie brackets with the drift vector field is involutive, then there exists an output and a feedback control law for which the Koopman generator is finite-dimensional and locally nilpotent. We use this connection to propose a data-driven algorithm 'Koopman generator-based feedback linearization (KGFL)' for feedback linearization of single-input systems. Particularly, we use experimental data to identify the state transformation and control feedback from a dictionary of functions for which feedback linearization is achieved in a least-squares sense. We also propose a single-step data-driven formula which can be used to compute the linearizing transformations. When the system is feedback linearizable and the chosen dictionary is complete, our data-driven algorithm provides the same solution as model-based feedback linearization. Finally, we provide numerical examples for the data-driven algorithm and compare it with model-based feedback linearization. We also numerically study the effect of the richness of the dictionary and the size of the dataset on the effectiveness of feedback linearization.
引用
收藏
页码:8844 / 8851
页数:8
相关论文
共 30 条
[1]   Data-Based Control of Feedback Linearizable Systems [J].
Alsalti, Mohammad ;
Lopez, Victor G. ;
Berberich, Julian ;
Allgoewer, Frank ;
Mueller, Matthias A. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (11) :7014-7021
[2]   Approximate feedback linearization: A homotopy operator approach [J].
Banaszuk, A ;
Hauser, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (05) :1533-1554
[3]   Koopman operator dynamical models: Learning, analysis and control [J].
Bevanda, Petar ;
Sosnowski, Stefan ;
Hirche, Sandra .
ANNUAL REVIEWS IN CONTROL, 2021, 52 :197-212
[4]   Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control [J].
Brunton, Steven L. ;
Brunton, Bingni W. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PLOS ONE, 2016, 11 (02)
[5]   Hermite Functions and Fourier Series [J].
Celeghini, Enrico ;
Gadella, Manuel ;
del Olmo, Mariano A. .
SYMMETRY-BASEL, 2021, 13 (05)
[6]  
De Persis C, 2023, IEEE DECIS CONTR P, P3037, DOI 10.1109/CDC49753.2023.10383720
[7]   Event-Triggered Control From Data [J].
De Persis, Claudio ;
Postoyan, Romain ;
Tesi, Pietro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (06) :3780-3795
[8]  
Fraile L, 2021, Arxiv, DOI arXiv:2003.14240
[9]  
Goswami Debdipta, 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), P6107, DOI 10.1109/CDC.2017.8264582
[10]   Learning Koopman Eigenfunctions and Invariant Subspaces From Data: Symmetric Subspace Decomposition [J].
Haseli, Masih ;
Cortes, Jorge .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) :3442-3457