Existence and multiplicity of solutions for a p(x)-Choquard-Kirchhoff problem involving critical growth and concave-convex nonlinearities

被引:0
作者
Ma, Wei [1 ,2 ]
Zhang, Qiongfen [1 ,2 ]
机构
[1] Guilin Univ Technol, Sch Math & Stat, Guilin 541004, Guangxi, Peoples R China
[2] Guangxi Coll & Univ Key Lab Appl Stat, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
p(x)-Choquard-Kirchhoff problem; Weighted variable exponent; Concentration-compactness principle; Mountain pass theorem; Ekeland variational principle; GROUND-STATE SOLUTIONS; DEGENERATE ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; P(X)-LAPLACIAN;
D O I
10.1016/j.jmaa.2024.128765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to studying a kind of p(x)-Choquard-Kirchhoff problems involving critical growth and concave-convex nonlinearities. Combining the concentration-compactness principle for weighted variable exponent spaces, the calculus of variations, genus theory and the Hardy-Littlewood-Sobolev type inequality, we obtain the existence of nontrivial solutions for this kind of p(x)-Choquard-Kirchhoff problems. Our results improve the related ones in the literature. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:23
相关论文
共 47 条
[1]   Existence Results for Double Phase Problem in Sobolev-Orlicz Spaces with Variable Exponents in Complete Manifold [J].
Aberqi, Ahmed ;
Bennouna, Jaouad ;
Benslimane, Omar ;
Ragusa, Maria Alessandra .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
[2]  
Alves C.O., 2019, Mediterr. J. Math., V16, P1
[3]   Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2 [J].
Alves, Claudianor O. ;
Cassani, Daniele ;
Tarsi, Cristina ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :1933-1972
[4]   Existence of semiclassical ground state solutions for a generalized Choquard equation [J].
Alves, Claudianor O. ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) :4133-4164
[5]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[6]  
Ayazoglu R, 2021, COLLECT MATH, V72, P129, DOI 10.1007/s13348-020-00283-5
[7]   On a class of fractional p(x) -Kirchhoff type problems [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. ;
Srati, M. .
APPLICABLE ANALYSIS, 2021, 100 (02) :383-402
[8]   Strauss and Lions Type Theorems for the Fractional Sobolev Spaces with Variable Exponent and Applications to Nonlocal Kirchhoff-Choquard Problem [J].
Bahrouni, Sabri ;
Ounaies, Hichem .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)
[9]   Variable order nonlocal Choquard problem with variable exponents [J].
Biswas, Reshmi ;
Tiwari, Sweta .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (05) :853-875
[10]   Generalized critical Kirchhoff-type potential systems with Neumann Boundary conditions [J].
Chems Eddine, Nabil ;
Ragusa, Maria Alessandra .
APPLICABLE ANALYSIS, 2022, 101 (11) :3958-3988