Microbial electrosynthesis from CO2 reaches productivity of syngas and chain elongation fermentations

被引:18
作者
Cabau-Peinado, Oriol [1 ]
Winkelhorst, Marijn [1 ]
Stroek, Rozanne [1 ]
Angelino, Roderick de Kat [1 ]
Straathof, Adrie J. J. [1 ]
Masania, Kunal [2 ]
Daran, Jean Marc [1 ]
Jourdin, Ludovic [1 ]
机构
[1] Delft Univ Technol, Dept Biotechnol, van der Maasweg 9, NL-2629 HZ Delft, Netherlands
[2] Delft Univ Technol, Fac Aerosp Engn, Shaping Matter Lab, Kluyverweg 1, NL-2629 HS Delft, Netherlands
关键词
ELECTRICITY-DRIVEN BIOPRODUCTION; CARBON-DIOXIDE; SP-NOV; GAS; ACIDS;
D O I
10.1016/j.tibtech.2024.06.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Carbon-based products are essential to society, yet producing them from fossil fuels is unsustainable. Microorganisms have the ability to take up electrons from solid electrodes and convert carbon dioxide (CO2) to valuable carbon-based chemicals. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here, we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO2 to even-chain C2-C6 carboxylic acids over 248 days. We demonstrate a threefold higher biofilm concentration, volumetric current density, and productivity compared with the state of the art. Most notably, the volumetric productivity (VP) resembles those achieved in laboratory-scale and industrial syngas (CO-H2-CO2) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO2 reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale up the technology.
引用
收藏
页码:1503 / 1522
页数:20
相关论文
共 50 条
[31]   Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds [J].
Nevin, Kelly P. ;
Woodard, Trevor L. ;
Franks, Ashley E. ;
Summers, Zarath M. ;
Lovley, Derek R. .
MBIO, 2010, 1 (02)
[32]   A logical data representation framework for electricity-driven bioproduction processes [J].
Patil, Sunil A. ;
Gildemyn, Sylvia ;
Pant, Deepak ;
Zengler, Karsten ;
Logan, Bruce E. ;
Rabaey, Korneel .
BIOTECHNOLOGY ADVANCES, 2015, 33 (06) :736-744
[33]  
Picioreanu C, 2000, BIOTECHNOL BIOENG, V68, P355, DOI 10.1002/(SICI)1097-0290(20000520)68:4<355::AID-BIT1>3.0.CO
[34]  
2-A
[35]   A computational model for biofilm-based microbial fuel cells [J].
Picioreanu, Cristian ;
Head, Ian M. ;
Katuri, Krishna P. ;
van Loosdrecht, Mark C. M. ;
Scott, Keith .
WATER RESEARCH, 2007, 41 (13) :2921-2940
[36]   Microbial electrosynthesis from CO2: forever a promise? [J].
Prevoteau, Antonin ;
Carvajal-Arroyo, Jose M. ;
Ganigue, Ramon ;
Rabaey, Korneel .
CURRENT OPINION IN BIOTECHNOLOGY, 2020, 62 :48-57
[37]   Microbial electrosynthesis - revisiting the electrical route for microbial production [J].
Rabaey, Korneel ;
Rozendal, Rene A. .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (10) :706-716
[38]   Continuous Long-Term Bioelectrochemical Chain Elongation to Butyrate [J].
Raes, Sanne M. T. ;
Jourdin, Ludovic ;
Buisman, Cees J. N. ;
Strik, David P. B. T. B. .
CHEMELECTROCHEM, 2017, 4 (02) :386-395
[39]   Granular sludge formation and characterization in a chain elongation process [J].
Roghair, Mark ;
Strik, David P. B. T. B. ;
Steinbusch, Kirsten J. J. ;
Weusthuis, Ruud A. ;
Bruins, Marieke E. ;
Buisman, Cees J. N. .
PROCESS BIOCHEMISTRY, 2016, 51 (10) :1594-1598
[40]   Selective butyric acid production from CO2 and its upgrade to butanol in microbial electrosynthesis cells [J].
Romans-Casas, Meritxell ;
Feliu-Paradeda, Laura ;
Tedesco, Michele ;
Hamelers, Hubertus V. M. ;
Baneras, Lluis ;
Balaguer, M. Dolors ;
Puig, Sebastia ;
Dessi, Paolo .
ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY, 2024, 17