Extended drag-based model for better predicting the evolution of coronal mass ejections

被引:0
|
作者
Rossi, M. [1 ]
Guastavino, S. [1 ,2 ]
Piana, M. [1 ,2 ]
Massone, A. M. [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
[2] Ist Nazl Astrofis, Osserv Astrofis Torino, Str Osserv 20, I-10025 Pino Torinese, Italy
关键词
methods: analytical; methods: data analysis; Sun: coronal mass ejections (CMEs); Sun: heliosphere; Sun: magnetic fields; solar wind; SOLAR-WIND DATA; MAGNETIC CLOUD; EVENTS; SUN;
D O I
10.1051/0004-6361/202452288
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Coronal mass ejections (CMEs) are one of the primary drivers of space weather disturbances, affecting both space-based and terrestrial technologies. The accurate prediction of CME trajectories and their arrival times at Earth is crucial for mitigating potential impacts. In this work, we introduce an extended drag-based model (EDBM) that incorporates an additional acceleration term to better capture the complex dynamics of CMEs as they propagate through the heliosphere. Preliminary results suggest that the EDBM can improve upon the classical drag-based model by providing more reliable estimates of CME travel times, particularly in cases where the CME experiences residual acceleration. However, further validation is required to fully assess the operational potential of the model for space weather forecasting. This study lays the groundwork for future investigations and applications, with the aim of enhancing the accuracy of CME prediction models.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A Data-constrained Model for Coronal Mass Ejections Using the Graduated Cylindrical Shell Method
    Singh, T.
    Yalim, M. S.
    Pogorelov, N. V.
    ASTROPHYSICAL JOURNAL, 2018, 864 (01)
  • [32] Observation-based modelling of magnetised coronal mass ejections with EUHFORIA
    Scolini, C.
    Rodriguez, L.
    Mierla, M.
    Pomoell, J.
    Poedts, S.
    ASTRONOMY & ASTROPHYSICS, 2019, 626
  • [33] INITIATION OF CORONAL MASS EJECTIONS BY MAGNETIC FLUX EMERGENCE IN THE FRAMEWORK OF THE BREAKOUT MODEL
    Zuccarello, F. P.
    Soenen, A.
    Poedts, S.
    Zuccarello, F.
    Jacobs, C.
    ASTROPHYSICAL JOURNAL LETTERS, 2008, 689 (02) : L157 - L160
  • [34] Inverse and normal coronal mass ejections:: evolution up to 1 AU
    Chané, E
    Van der Holst, B
    Jacobs, C
    Poedts, S
    Kimpe, D
    ASTRONOMY & ASTROPHYSICS, 2006, 447 (02) : 727 - 733
  • [35] Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA
    Scolini, C.
    Dasso, S.
    Rodriguez, L.
    Zhukov, A. N.
    Poedts, S.
    ASTRONOMY & ASTROPHYSICS, 2021, 649
  • [36] The evolution of vector magnetic fields and the origin of coronal mass ejections (CMEs)
    Zhang, J
    Zhou, GP
    Wang, JX
    CORONAL AND STELLAR MASS EJECTIONS, 2005, (226): : 184 - 193
  • [37] Empirical model of the transit time of interplanetary coronal mass ejections
    Mahrous, A.
    El-Nawawy, M.
    Hammam, M.
    Ahmed, N.
    SOLAR SYSTEM RESEARCH, 2009, 43 (02) : 128 - 135
  • [38] Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images
    Lugaz, N.
    Kintner, P.
    SOLAR PHYSICS, 2013, 285 (1-2) : 281 - 294
  • [39] On the Expansion Speed of Coronal Mass Ejections: Implications for Self-Similar Evolution
    Balmaceda, L. A.
    Vourlidas, A.
    Stenborg, G.
    St Cyr, O. C.
    SOLAR PHYSICS, 2020, 295 (08)
  • [40] Effect of the solar wind density on the evolution of normal and inverse coronal mass ejections
    Hosteaux, S.
    Chane, E.
    Poedts, S.
    ASTRONOMY & ASTROPHYSICS, 2019, 632