Development of a Genetically Encoded Sensor for Arginine

被引:0
|
作者
Wang, Chun [1 ,2 ,3 ,4 ]
Zhang, Xiaoxue [3 ,4 ]
Mao, Haoyu [3 ,4 ,5 ,6 ]
Xian, Yi [3 ,4 ,5 ,6 ]
Rao, Yi [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Capital Med Univ, Sch Basic Med Sci, Beijing 100069, Peoples R China
[2] Chinese Inst Brain Res, Beijing 102206, Peoples R China
[3] Chinese Inst Brain Res, Changping Lab, Yard 28, Sci Pk Rd, Beijing 102206, Peoples R China
[4] Chinese Acad Med Sci, Res Unit Med Neurobiol, Beijing 102206, Peoples R China
[5] PKU, McGovern Inst Brain Res, Coll Chem & Mol Engn, Peking Tsinghua Ctr Life Sci,Dept Chem Biol,Lab Ne, Beijing 100871, Peoples R China
[6] Peking Univ, Beijing, Peoples R China
[7] Capital Med Univ, Chinese Inst Med Res, Beijing CIMR Beijing, Beijing 100069, Peoples R China
来源
ACS SENSORS | 2025年 / 10卷 / 02期
关键词
<sc>l</sc>-arginine; fluorescent protein; fluorescentprobe; biosensor; cell imaging; ORNITHINE-BINDING PROTEIN; MONOMETHYL-L-ARGININE; NITRIC-OXIDE; PERIPLASMIC LYSINE; AMINO-ACID; UREA CYCLE; METABOLISM; CELLS; LAO; BIOSENSOR;
D O I
10.1021/acssensors.4c03174
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The amino acid l-arginine (Arg) plays important roles in multiple metabolic and physiological processes, and changes in its concentration have been implicated in pathological processes. While it is important to measure Arg levels in biological systems directly and in real-time, existing Arg sensors respond to l-ornithine or l-lysine. Here we report ArgS1, a new Arg sensor. It showed a concentration-dependent increase in the ratio Ex488/405 for Arg with an apparent affinity of similar to 64 mu M and with a dynamic range (Delta R/R-0) of 3. ArgS1 responds to Arg in both the cytoplasm and the subcellular organelles. ArgS1 monitored Arg levels in MDA-MB-231 cells, a breast cancer cell line deficient in a key enzyme for Arg synthesis (arginino-succinate synthetase1, ASS1) and amenable to Arg depletion therapy. We found that Arg levels in MDA-MB-231 cells decreased after depletion of extracellular Arg with a concomitant decline in cell viability. When ASS1 was overexpressed in the cells, Arg levels increased and cell viability was also enhanced. Thus, ArgS1 is an effective tool for real-time monitoring of Arg in human cells over a dynamic range of physiological and pathological relevance.
引用
收藏
页码:1260 / 1269
页数:10
相关论文
共 50 条
  • [41] Imaging Approaches for the Study of Metabolism in Real Time Using Genetically Encoded Reporters
    Chandris, Panagiotis
    Giannouli, Christina C.
    Panayotou, George
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 9
  • [42] Rapid, randomized development of genetically encoded FRET sensors for small molecules
    Peroza, Estevao Aun
    Boumezbeur, Ahmed-Hocine
    Zamboni, Nicola
    ANALYST, 2015, 140 (13) : 4540 - 4548
  • [43] Selenomethionine incorporation in proteins of individual mammalian cells determined with a genetically encoded fluorescent sensor
    Hussein, Rama A.
    Ahmed, Marwa
    Kuldyushev, Nikita
    Schoenherr, Roland
    Heinemann, Stefan H.
    FREE RADICAL BIOLOGY AND MEDICINE, 2022, 192 : 191 - 199
  • [44] Genetically encoded FRET-based optical sensor for Hg2+ detection and intracellular imaging in living cells
    Soleja, Neha
    Jairajpuri, Mohamad Aman
    Queen, Aarfa
    Mohsin, Mohd
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2019, 46 (12) : 1669 - 1683
  • [45] Monitoring NAD(H) and NADP(H) dynamics during organismal development with genetically encoded fluorescent biosensors
    Li, Ting
    Zou, Yejun
    Liu, Shuning
    Yang, Yi
    Zhang, Zhuo
    Zhao, Yuzheng
    CELL REGENERATION, 2022, 11 (01)
  • [46] Genetically Encoded Redox Sensors
    Chiu, Wai Kan
    Towheed, Atif
    Palladino, Michael J.
    CONCEPTUAL BACKGROUND AND BIOENERGETIC/MITOCHONDRIAL ASPECTS OF ONCOMETABOLISM, 2014, 542 : 263 - 287
  • [47] Plants with genetically encoded autoluminescence
    Mitiouchkina, Tatiana
    Mishin, Alexander S.
    Somermeyer, Louisa Gonzalez
    Markina, Nadezhda M.
    Chepurnyh, Tatiana, V
    Guglya, Elena B.
    Karataeva, Tatiana A.
    Palkina, Kseniia A.
    Shakhova, Ekaterina S.
    Fakhranurova, Liliia, I
    Chekova, Sofia, V
    Tsarkova, Aleksandra S.
    Golubev, Yaroslav, V
    Negrebetsky, Vadim V.
    Dolgushin, Sergey A.
    Shalaev, Pavel, V
    Shlykov, Dmitry
    Melnik, Olesya A.
    Shipunova, Victoria O.
    Deyev, Sergey M.
    Bubyrev, Andrey, I
    Pushin, Alexander S.
    Choob, Vladimir V.
    Dolgov, Sergey, V
    Kondrashov, Fyodor A.
    Yampolsky, Ilia, V
    Sarkisyan, Karen S.
    NATURE BIOTECHNOLOGY, 2020, 38 (08) : 944 - +
  • [48] A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors
    Koveal, Dorothy
    Rosen, Paul C.
    Meyer, Dylan J.
    Diaz-Garcia, Carlos Manlio
    Wang, Yongcheng
    Cai, Li-Heng
    Chou, Peter J.
    Weitz, David A.
    Yellen, Gary
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [49] Genetically Encoded Voltage Indicators
    Mollinedo-Gajate, Irene
    Song, Chenchen
    Knopfel, Thomas
    OPTOGENETICS: LIGHT-SENSING PROTEINS AND THEIR APPLICATIONS IN NEUROSCIENCE AND BEYOND, 2ND EDITION, 2021, 1293 : 209 - 224
  • [50] Imaging dynamic redox processes with genetically encoded probes
    Ezerina, Dania
    Morgan, Bruce
    Dick, Tobias P.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2014, 73 : 43 - 49