Molecular Bridge in Wide-Bandgap Perovskites for Efficient and Stable Perovskite/ Silicon Tandem Solar Cells

被引:0
|
作者
Ye, Tianshi [1 ]
Qiao, Liang [1 ]
Wang, Tao [1 ]
Wang, Pengshuai [1 ]
Zhang, Lin [1 ]
Sun, Ruitian [1 ]
Kong, Weiyu [1 ]
Xu, Menglei [2 ]
Yan, Xunlei [2 ]
Yang, Jie [2 ]
Zhang, Xinyu [2 ]
Yang, Xudong [1 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Zhejiang Jinko Solar Co Ltd, Jiaxing 314416, Zhejiang, Peoples R China
[3] Shanghai Jiao Tong Univ, Ctr Hydrogen Sci, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Zhangjiang Inst Adv Study, Innovat Ctr Future Mat, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
additive engineering; light-induced halide segregation; mixed-halide wide-bandgap perovskites; open-circuit voltage deficit; perovskite/silicon tandem solar cells; HALIDE PEROVSKITES;
D O I
10.1002/adfm.202419391
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Perovskite/silicon tandem solar cells (TSCs) attract intensive attention because of their potential to deliver power conversion efficiencies (PCE) beyond those of their single-junction counterparts. However, the performance and stability of tandem devices are limited by defect-assisted non-radiative recombination and light-induced halide segregation in wide-bandgap (WBG) perovskite sub-cells. Here, 2-aminoethanesulfonamide hydrochloride (AESCl), with multi-point chelation sites and bridging capability, is incorporated into a 1.68 eV WBG perovskite to comprehensively passivate defects at grain boundaries and surfaces. As a result, AESCl-treated perovskite films show suppressed halide segregation and a champion WBG single-junction solar cell achieves an impressive efficiency of 22.80% with an open-circuit voltage of 1.286 V due to reduced non-radiative recombination. The efficient WBG perovskite sub-cells enable perovskite/silicon TSCs to reach a champion PCE of 30.36% over 1 cm2. Moreover, the tandem devices retain over 96% of their initial efficiency after operation for 1068 h under continuous AM 1.5G illumination at 25 degrees C in ambient air.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells
    Guang Yang
    Zhenyi Ni
    Zhengshan J. Yu
    Bryon W. Larson
    Zhenhua Yu
    Bo Chen
    Abdulwahab Alasfour
    Xun Xiao
    Joseph M. Luther
    Zachary C. Holman
    Jinsong Huang
    Nature Photonics, 2022, 16 : 588 - 594
  • [2] Defect engineering in wide-bandgap perovskites for efficient perovskite-silicon tandem solar cells
    Yang, Guang
    Ni, Zhenyi
    Yu, Zhengshan J.
    Larson, Bryon W.
    Yu, Zhenhua
    Chen, Bo
    Alasfour, Abdulwahab
    Xiao, Xun
    Luther, Joseph M.
    Holman, Zachary C.
    Huang, Jinsong
    NATURE PHOTONICS, 2022, 16 (08) : 588 - +
  • [3] Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/silicon tandem solar cells
    Fang, Zheng
    Deng, Bingru
    Jin, Yongbin
    Yang, Liu
    Chen, Lisha
    Zhong, Yawen
    Feng, Huiping
    Yin, Yue
    Liu, Kaikai
    Li, Yingji
    Zhang, Jinyan
    Huang, Jiarong
    Zeng, Qinghua
    Wang, Hao
    Yang, Xing
    Yang, Jinxin
    Tian, Chengbo
    Xie, Liqiang
    Wei, Zhanhua
    Xu, Xipeng
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] Interfacial Engineering of Wide-Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells
    Wang, Deng
    Guo, Hongling
    Wu, Xin
    Deng, Xiang
    Li, Fengzhu
    Li, Zhen
    Lin, Francis
    Zhu, Zonglong
    Zhang, Yi
    Xu, Baomin
    Jen, Alex K. Y.
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (02)
  • [5] Multifunctional Buffer Layer Engineering for Efficient and Stable Wide-Bandgap Perovskite and Perovskite/Silicon Tandem Solar Cells
    Ji, Xiaofei
    Ding, Yian
    Bi, Leyu
    Yang, Xin
    Wang, Jiarong
    Wang, Xiaoting
    Liu, Yuanzhong
    Yan, Yiran
    Zhu, Xiangrong
    Huang, Jin
    Yang, Liyou
    Fu, Qiang
    Jen, Alex K. -Y.
    Lu, Linfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (32)
  • [6] Stable wide-bandgap perovskite solar cells for tandem applications
    Cheng, Zhendong
    Zhang, Meng
    Zhang, Yan
    Qi, Wenjing
    Wang, Zhaoyi
    Liu, Bo
    Di, Dawei
    NANO ENERGY, 2024, 127
  • [7] Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites
    Kim, Daehan
    Jung, Hee Joon
    Park, Ik Jae
    Larson, Bryon W.
    Dunfield, Sean P.
    Xiao, Chuanxiao
    Kim, Jekyung
    Tong, Jinhui
    Boonmongkolras, Passarut
    Ji, Su Geun
    Zhang, Fei
    Pae, Seong Ryul
    Kim, Minkyu
    Kang, Seok Beom
    Dravid, Vinayak
    Berry, Joseph J.
    Kim, Jin Young
    Zhu, Kai
    Kim, Dong Hoe
    Shin, Byungha
    SCIENCE, 2020, 368 (6487) : 155 - +
  • [8] Cation Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Zhao, Xiaoni
    Cao, Jiali
    Nie, Ting
    Liu, Shengzhong
    Fang, Zhimin
    SOLAR RRL, 2024, 8 (20):
  • [9] Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency
    Yao, Yuxin
    Hang, Pengjie
    Li, Biao
    Hu, Zechen
    Kan, Chenxia
    Xie, Jiangsheng
    Wang, Ying
    Zhang, Yiqiang
    Yang, Deren
    Yu, Xuegong
    SMALL, 2022, 18 (38)
  • [10] Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells
    Guo, Xiao
    Jia, Zhenrong
    Liu, Shunchang
    Guo, Renjun
    Jiang, Fangyuan
    Shi, Yangwei
    Dong, Zijing
    Luo, Ran
    Wang, Yu-Duan
    Shi, Zhuojie
    Li, Jia
    Chen, Jinxi
    Lee, Ling Kai
    Mueller-Buschbaum, Peter
    Ginger, David S.
    Paterson, David J.
    Hou, Yi
    JOULE, 2024, 8 (09) : 2554 - 2569