Real-Time Facial Attribute Recognition Using Multi-Task Learning

被引:0
作者
Yuan, Huaqing [1 ]
He, Yi [1 ]
Du, Peng [1 ]
Song, Lu [1 ]
Xu, Yanbin [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin Key Lab Intelligent Unmanned Swarm Techno, Tianjin 300072, Peoples R China
来源
2024 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC 2024 | 2024年
关键词
Facial attribute estimation; Multi-task Learning; Deep Learning; Edge computing; GENDER; MODEL; AGE;
D O I
10.1109/I2MTC60896.2024.10561176
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the realm of facial attribute recognition, crucial for applications like video surveillance, face retrieval, and recommendation systems, existing approaches often fall short in realistic scenarios, particularly for low-cost embedded systems. In this paper, we propose a Deep Multi-Task Learning approach to concurrently estimate multiple facial attributes from a single face image. We use convolutional neural networks to learn the commonalities and dissimilarities among various attributes. To address ordinal attribute estimation, we transform the original regression problem into a linear combination of binary classification subproblems, effectively reducing estimation errors. Experimental results from diverse datasets underscore the superior performance of our proposed approach. Finally, we present a practical solution for the cost-effective and swift application of our approach in realistic scenarios.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Real-time head pose estimation using multi-task deep neural network
    Ahn, Byungtae
    Choi, Dong-Geol
    Park, Jaesik
    Kweon, In So
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 103 : 1 - 12
  • [32] HIERARCHICAL MULTI-TASK NETWORK FOR RACE, GENDER AND FACIAL ATTRACTIVENESS RECOGNITION
    Xu, Lu
    Fan, Heng
    Xiang, Jinhai
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3861 - 3865
  • [33] Fast Drivable Areas Estimation with Multi-Task Learning for Real-Time Autonomous Driving Assistant
    Lee, Dong-Gyu
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [34] Recognition of Latin American Spanish using Multi-task Learning
    Mendes, Carlos
    Abad, Alberto
    Neto, Joao Paulo
    Trancoso, Isabel
    INTERSPEECH 2019, 2019, : 2135 - 2139
  • [35] Real-Time Multi-Task Deep Learning Model for Polyp Detection, Characterization, and Size Estimation
    Sunthornwetchapong, Phanukorn
    Hombubpha, Kasichon
    Tiankanon, Kasenee
    Aniwan, Satimai
    Jakkrawankul, Pasit
    Nupairoj, Natawut
    Vateekul, Peerapon
    Rerknimitr, Rungsun
    IEEE ACCESS, 2025, 13 : 8469 - 8481
  • [36] Robust Feature Representation Using Multi-Task Learning for Human Activity Recognition
    Azadi, Behrooz
    Haslgruebler, Michael
    Anzengruber-Tanase, Bernhard
    Sopidis, Georgios
    Ferscha, Alois
    SENSORS, 2024, 24 (02)
  • [37] An Experimental Evaluation of Smart Sensors for Pedestrian Attribute Recognition Using Multi-Task Learning and Vision Language Models
    Greco, Antonio
    Saggese, Alessia
    Sansone, Carlo
    Vento, Bruno
    SENSORS, 2025, 25 (06)
  • [38] Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach
    Han, Hu
    Jain, Anil K.
    Wang, Fang
    Shan, Shiguang
    Chen, Xilin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (11) : 2597 - 2609
  • [39] Multi-Task Deep Relative Attribute Learning for Visual Urban Perception
    Min, Weiqing
    Mei, Shuhuan
    Liu, Linhu
    Wang, Yi
    Jiang, Shuqiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 657 - 669
  • [40] You Only Look at Once for Real-Time and Generic Multi-Task
    Wang, Jiayuan
    Wu, Q. M. Jonathan
    Zhang, Ning
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (09) : 12625 - 12637