Ultrahigh purity plasma-enhanced atomic layer deposition and electrical properties of epitaxial scandium nitride

被引:0
作者
Rayner, Gilbert B. [1 ]
O'Toole, Noel [1 ]
Liu, Bangzhi [2 ]
Shallenberger, Jeffrey [2 ]
Zhu, Jiadi [3 ]
Palacios, Tomas [3 ]
Behera, Piush [4 ]
Cheema, Suraj [3 ,4 ,5 ]
Johs, Blaine [6 ]
Strnad, Nicholas A. [7 ]
机构
[1] KURT J LESKER CO, 1925 PA-51, Jefferson Hills, PA 15025 USA
[2] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[3] MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] Film Sense, 500 South St 7, Lincoln, NE 68522 USA
[7] DEVCOM Army Res Lab, Army Res Directorate, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2025年 / 43卷 / 02期
关键词
ELECTRONIC-PROPERTIES; THIN-FILMS; GROWTH; SCN;
D O I
10.1116/6.0004180
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Scandium nitride (ScN) by plasma-enhanced atomic layer deposition (PEALD) was demonstrated on silicon (100), sapphire (0001), and magnesium oxide (001) substrates under ultrahigh purity conditions using a new Sc precursor, bis(ethylcyclopentadienyl)scandium-chloride [ClSc(EtCp)(2)]. Out-of-plane x-ray diffraction patterns indicated single-crystal, cubic phase ScN deposited at 215 degrees C on sapphire (0001) and magnesium oxide (001) substrates, whereas phi-scans confirmed epitaxial growth. The ScN thin films grown on silicon with native oxide were polycrystalline with no preferential orientation. The ScN films showed a nitrogen-to-scandium ratio of approximately 1:1 measured by x-ray photoelectron spectroscopy, with ultra-low levels of elemental impurities including 2.5 at. % chlorine, 0.9 at. % carbon, and 0.4 at. % oxygen. ClSc(EtCp)(2) and N-2-H-2 plasma were evaluated as ScN co-precursors at substrate temperatures ranging from 200 to 300 degrees C, where we identified an atomic layer deposition window between 200 and 215 degrees C. Images by field emission scanning electron microscopy (FESEM) on 43 nm-thick films grown on untreated silicon revealed columnar grains with lateral sizes ranging from 16 to 28 nm. ScN conformality across 4:1 aspect ratio silicon trench structures with 312 nm-wide openings was also imaged by FESEM showing a top-to-bottom thickness ratio of 75%. ScN electrical properties were evaluated by performing Hall measurements to determine mobility, free electron concentration, and resistivity. For ScN PEALD on magnesium oxide (001), the average mobility was 298 cm(2)/V s with a carrier concentration of 2.35 x 10(19) cm(-3). The average resistivity was 1.01 m Omega cm.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Growing oriented AlN films on sapphire substrates by plasma-enhanced atomic layer deposition
    Tarala, V. A.
    Altakhov, A. S.
    Ambartsumov, M. G.
    Martens, V. Ya.
    TECHNICAL PHYSICS LETTERS, 2017, 43 (01) : 74 - 77
  • [42] Piezoelectric Properties of Zinc Oxide Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition
    Abu Ali, Taher
    Pilz, Julian
    Schaeffner, Philipp
    Kratzer, Markus
    Teichert, Christian
    Stadlober, Barbara
    Coclite, Anna Maria
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (21):
  • [43] Thermal and Plasma-Enhanced Atomic Layer Deposition of Yttrium Oxide Films and the Properties of Water Wettability
    Zhao, Bo
    Mattelaer, Felix
    Rampelberg, Geert
    Dendooven, Jolien
    Detavernier, Christophe
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (02) : 3179 - 3187
  • [44] Growth Characteristics and Film Properties of Cerium Dioxide Prepared by Plasma-Enhanced Atomic Layer Deposition
    Kim, Woo-Hee
    Kim, Min-Kyu
    Maeng, W. J.
    Gatineau, Julien
    Pallem, Venkat
    Dussarrat, Christian
    Noori, Atif
    Thompson, David
    Chu, Schubert
    Kim, Hyungjun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (08) : G169 - G172
  • [45] Growth mechanism and electrical properties of tungsten films deposited by plasma-enhanced atomic layer deposition with chloride and metal organic precursors
    Lee, Yujin
    Seo, Seunggi
    Nam, Taewook
    Lee, Hyunho
    Yoon, Hwi
    Sun, Sangkyu
    Oh, Il-Kwon
    Lee, Sanghun
    Shong, Bonggeun
    Seo, Jin Hyung
    Seok, Jang Hyeon
    Kim, Hyungjun
    APPLIED SURFACE SCIENCE, 2021, 568
  • [46] Thermal annealing of superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition
    Gonzalez Diaz-Palacio, Isabel
    Wenskat, Marc
    Deyu, Getnet Kacha
    Hillert, Wolfgang
    Blick, Robert H.
    Zierold, Robert
    JOURNAL OF APPLIED PHYSICS, 2023, 134 (03)
  • [47] Structural, Optical, and Electrical Properties of InOX Thin Films Deposited by Plasma-Enhanced Atomic Layer Deposition for Flexible Device Applications
    Hong, TaeHyun
    Kim, KyoungRok
    Choi, Su-Hwan
    Lee, Seung-Hwan
    Han, Ki-Lim
    Lim, Jun Hyung
    Park, Jin-Seong
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (06) : 3010 - 3017
  • [48] Influence of plasma species on the early-stage growth kinetics of epitaxial InN grown by plasma-enhanced atomic layer deposition
    Woodward, Jeffrey M.
    Rosenberg, Samantha G.
    Boris, David R.
    Johnson, Michael J.
    Walton, Scott G.
    Johnson, Scooter D.
    Robinson, Zachary R.
    Nepal, Neeraj
    Ludwig Jr, Karl F.
    Hite, Jennifer K.
    Eddy Jr, Charles R.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2022, 40 (06):
  • [49] Baking and plasma pretreatment of sapphire surfaces as a way to facilitate the epitaxial plasma-enhanced atomic layer deposition of GaN thin films
    Liu, Sanjie
    Zhao, Gang
    He, Yingfeng
    Li, Yangfeng
    Wei, Huiyun
    Qiu, Peng
    Wang, Xinyi
    Wang, Xixi
    Cheng, Jiadong
    Peng, Mingzeng
    Zaera, Francisco
    Zheng, Xinhe
    APPLIED PHYSICS LETTERS, 2020, 116 (21)
  • [50] Plasma-enhanced atomic layer deposition of Ir thin films for copper adhesion layer
    Jeong, Seong-Jun
    Shin, Yu-Ri
    Kwack, Won-Sub
    Lee, Hyung Woo
    Jeong, Young-Keun
    Kim, Doo-In
    Kim, Hyun Chang
    Kwon, Se-Hun
    SURFACE & COATINGS TECHNOLOGY, 2011, 205 (21-22) : 5009 - 5013