Unlocking drought in pistachio orchards: monitoring and forecasting using landsat time series and machine learning techniques

被引:0
|
作者
Zarei, Neda [1 ]
Latifi, Hooman [1 ,2 ]
Hosseininaveh, Ali [1 ]
机构
[1] KN Toosi Univ Technol, Fac Geodesy & Geomat Engn, Dept Photogrammetry & Remote Sensing, Tehran 1996715433, Iran
[2] Univ Wurzburg, Inst Geog & Geol, Dept Remote Sensing, D-97074 Wurzburg, Germany
关键词
Pistachio orchards; Drought monitoring; Drought prediction; Machine learning; Artificial neural network; SUPPORT VECTOR MACHINES; AGRICULTURAL DROUGHT; VEGETATION INDEX; COVER; CLASSIFICATION; PREDICTION; GROUNDWATER; PERFORMANCE; ALGORITHMS; MODIS;
D O I
10.1007/s13580-025-00689-9
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Agricultural drought leads to reduced water resources, vegetation changes, and, in turn, to durable impacts on agricultural productivity. Rafsanjan, a major hub for pistachio production in Iran, has faced significant challenges due to drought, resulting in reduced cultivation and orchard abandonment, which poses serious issues for farmers. This study aimed to monitor and predict drought conditions in pistachio orchards via remote sensing and to examine their relationships with groundwater resources. Landsat time series data and three classification algorithms, including random forest, support vector machine (SVM), and artificial neural network (ANN), were used to classify pistachio orchards from 2008 to 2022. We also compared the effectiveness of the two data-driven models for forecasting drought. Vegetation health index (VHI) values were forecasted via ANN and SVM over one- and three-year lead times, revealing a declining trend in pistachio orchards linked to groundwater resources. Monitoring results revealed that the SVM outperformed the other methods, achieving an average overall accuracy of 95% and a kappa coefficient of 0.90. Additionally, the ANN excelled in forecasting the VHI, with root-mean-square errors of 0.024 and 0.043, mean absolute errors of 0.019 and 0.034, and R2 values of 0.85 and 0.78 for one- and three-year lead times, respectively. This study underscores the necessity of simultaneously examining the factors contributing to drought in arid regions and determining the relationships and contributions of these factors to drought levels in horticultural key crops.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Water Demand Forecasting Using Machine Learning and Time Series Algorithms
    Ibrahim, Tarek
    Omar, Yasser
    Maghraby, Fahima A.
    2020 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2020, : 325 - 329
  • [22] Forecasting insect abundance using time series embedding and machine learning
    Palma, Gabriel R.
    Mello, Rodrigo F.
    Godoy, Wesley A. C.
    Engel, Eduardo
    Lau, Douglas
    Markham, Charles
    Moral, Rafael A.
    ECOLOGICAL INFORMATICS, 2025, 85
  • [23] Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions
    Park, Seonyoung
    Im, Jungho
    Jang, Eunna
    Rhee, Jinyoung
    AGRICULTURAL AND FOREST METEOROLOGY, 2016, 216 : 157 - 169
  • [24] Machine Learning Techniques for Air Quality Forecasting and Study on Real-Time Air Quality Monitoring
    Hable-Khandekar, Varsha
    Srinath, Pravin
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2017,
  • [25] A practical data-driven approach for precise stem water potential monitoring in pistachio and almond orchards using supervised machine learning algorithms
    Mortazavi, Mehrad
    Carpin, Stefano
    Toudeshki, Arash
    Ehsani, Reza
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 231
  • [26] A Comparative Simulation Study of Classical and Machine Learning Techniques for Forecasting Time Series Data
    Iaousse, Mbarek
    Jouilil, Youness
    Bouincha, Mohamed
    Mentagui, Driss
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (08) : 56 - 65
  • [27] Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques
    Rajasundrapandiyanleebanon, T.
    Kumaresan, K.
    Murugan, Sakthivel
    Subathra, M. S. P.
    Sivakumar, Mahima
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 3059 - 3079
  • [28] Applying sustainable development goals in financial forecasting using machine learning techniques
    Chang, Ariana
    Lee, Tian-Shyug
    Lee, Hsiu-Mei
    CORPORATE SOCIAL RESPONSIBILITY AND ENVIRONMENTAL MANAGEMENT, 2024, 31 (03) : 2277 - 2289
  • [29] Drought Forecasting of Seyhan and Ceyhan Basins Using Machine Learning Methods
    Alkan, Ali
    Tombul, Mustafa
    WATER RESOURCES, 2024, 51 (01) : 12 - 26
  • [30] Comparative optimization of global solar radiation forecasting using machine learning and time series models
    Belmahdi, Brahim
    Louzazni, Mohamed
    El Bouardi, Abdelmajid
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (10) : 14871 - 14888