Development and verification of the higher-order mode neutron flux calculation code HARMONY2.0

被引:0
作者
Zhang, Er-Pin [1 ,2 ]
Ni, Zi-Ning [1 ,2 ]
Deng, Nian-Biao [1 ,2 ]
Xie, Jin-Sen [1 ,2 ]
Liu, Yong [3 ]
Yu, Tao [1 ,2 ]
机构
[1] Univ South China, Sch Nucl Sci & Technol, Hengyang 421000, Peoples R China
[2] Minist Educ, Key Lab Adv Nucl Energy Design & Safety, Hengyang 421000, Peoples R China
[3] Nucl Power Inst China, Sci & Technol Reactor Syst Design Technol Lab, Chengdu 610213, Peoples R China
基金
中国国家自然科学基金;
关键词
Neutron diffusion equation; Higher-order modes; Global homogenization; Two-step method; Domain decomposition; ALPHA-MODES; ACCELERATION; GENERATION;
D O I
10.1007/s41365-024-01619-7
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Higher-order modes of the neutron diffusion/transport equation can be used to study the temporal behavior of nuclear reactors and can be applied in modal analysis, transient analysis, and online monitoring of the reactor core. Both the deterministic method and the Monte Carlo (MC) method can be used to solve the higher-order modes. However, MC method, compared to the deterministic method, faces challenges in terms of computational efficiency and alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} mode calculation stability, whereas the deterministic method encounters issues arising from homogenization-related geometric and energy spectra adaptation. Based on the higher-order mode diffusion calculation code HARMONY, we developed a new higher-order mode calculation code, HARMONY2.0, which retains the functionality of computing lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} and alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} higher-order modes from HARMONY1.0, but enhances the ability to treat complex geometries and arbitrary energy spectra using the MC-deterministic hybrid two-step strategy. In HARMONY2.0, the mesh homogenized multigroup constants were obtained using OpenMC in the first step, and higher-order modes were then calculated with the mesh homogenized core diffusion model using the implicitly restarted Arnoldi method (IRAM), which was also adopted in the HARMONY1.0 code. In addition, to improve the calculation efficiency, particularly in large higher-order modes, event-driven parallelization/domain decomposition methods are embedded in the HARMONY2.0 code to accelerate the inner iteration of lambda/alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda /\alpha$$\end{document} mode using OpenMP. Furthermore, the higher-order modes of complex geometric models, such as Hoogenboom and ATR reactors for lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} mode and the MUSE-4 experiment facility for the prompt alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} mode, were computed using diffusion theory.
引用
收藏
页数:19
相关论文
共 47 条
[1]   Assessment of numerical methods for the evaluation of higher-order harmonics in diffusion theory [J].
Abrate, Nicolo ;
Bruna, Giovanni ;
Dulla, Sandra ;
Ravetto, Piero .
ANNALS OF NUCLEAR ENERGY, 2019, 128 :455-470
[2]  
[Anonymous], 2013, OpenMP Application Programming Interface
[3]   Strengths and weaknesses of the modal expansion method for perturbations calculations in nuclear reactor physics [J].
Archier, Pascal ;
Sauzedde, Thibault ;
Nguyen, Frederic .
ANNALS OF NUCLEAR ENERGY, 2023, 193
[4]   Spectral properties of dynamic processes in a nuclear reactor [J].
Avvakumov, Alexander V. ;
Strizhov, Valery F. ;
Vabishchevich, Petr N. ;
Vasilev, Alexander O. .
ANNALS OF NUCLEAR ENERGY, 2017, 99 :68-79
[5]   Higher order power reactor noise analysis: The multigroup diffusion model [J].
Ayyoubzadeh, Seyed Mohsen ;
Hosseini, Seyed Abolfazl ;
Vosoughi, Naser .
ANNALS OF NUCLEAR ENERGY, 2018, 111 :354-370
[6]   A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method [J].
Bernal, Alvaro ;
Hebert, Alain ;
Roman, Jose E. ;
Miro, Rafael ;
Verdu, Gumersindo .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2017, 54 (10) :1085-1094
[7]  
Betzler B.R., 2014, Journal of Computational and Theoretical Transport, V43, P38, DOI [DOI 10.1080/00411450.2014.909851, 10.1080/00411450.2014.909851]
[8]   Calculating Alpha Eigenvalues and Eigenfunctions with a Markov Transition Rate Matrix Monte Carlo Method [J].
Betzler, Benjamin R. ;
Kiedrowski, Brian C. ;
Martin, William R. ;
Brown, Forrest B. .
NUCLEAR SCIENCE AND ENGINEERING, 2018, 192 (02) :115-152
[9]  
BOYD W. R. D., 2017, THESIS MIT
[10]   Multigroup Cross-Section Generation with the OpenMC Monte Carlo Particle Transport Code [J].
Boyd, William ;
Nelson, Adam ;
Romano, Paul K. ;
Shaner, Samuel ;
Forget, Benoit ;
Smith, Kord .
NUCLEAR TECHNOLOGY, 2019, 205 (07) :928-944