SCALE-Pose: Skeletal Correction and Language Knowledge-assisted for 3D Human Pose Estimation

被引:0
作者
Ma, Xinnan [1 ]
Li, Yaochen [1 ]
Zhao, Limeng [1 ]
Zhou, ChenXu [1 ]
Xu, Yuncheng [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Software Engn, Xian 710049, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XI | 2025年 / 15041卷
关键词
3D human pose estimation; Transformer; Priori knowledge; Skeletal correction; Large language model;
D O I
10.1007/978-981-97-8795-1_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Transformer-based 3D human pose estimation methods typically use 2D joint sequences as inputs, leveraging spatial and temporal transformer encoders to model the 3D human pose. However, these methods often neglect to incorporate skeletal constraints to limit joint motion, and few consider integrating prior category knowledge to enhance potential joint representations. To solve these problems, we propose a new method named SCALE-Pose. Firstly, this method incorporates the spatial and temporal skeleton correction blocks to improve the ability of modeling the long-range dependency of the spatiotemporal motion of specific skeletons. Next, a four-stream radian loss based on skeleton angle error is introduced to constrain the motion space of joints. Finally, an auxiliary method employs global-local prompts from a large language model to generate prior category knowledge, improving the ability to generalize prior category knowledge. Experimental results on Human3.6M and MPI-INF-3DHP datasets demonstrate that our method outperforms existing approaches.
引用
收藏
页码:578 / 592
页数:15
相关论文
共 50 条
  • [1] LEARNING MONOCULAR 3D HUMAN POSE ESTIMATION WITH SKELETAL INTERPOLATION
    Chen, Ziyi
    Sugimoto, Akihiro
    Lai, Shang-Hong
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4218 - 4222
  • [2] SlowFastFormer for 3D human pose estimation
    Zhou, Lu
    Chen, Yingying
    Wang, Jinqiao
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 243
  • [3] Joint multi-scale transformers and pose equivalence constraints for 3D human pose estimation
    Wu, Yongpeng
    Kong, Dehui
    Gao, Junna
    Li, Jinghua
    Yin, Baocai
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 103
  • [4] MixPose: 3D Human Pose Estimation with Mixed Encoder
    Cheng, Jisheng
    Cheng, Qin
    Yang, Mengjie
    Liu, Zhen
    Zhang, Qieshi
    Cheng, Jun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 353 - 364
  • [5] Group Spatial Attention for 3D Human Pose Estimation
    Tran, Tien-Dat
    Cao, Ge
    Ashraf, Russo
    Jo, Kang-Hyun
    2024 33RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, ISIE 2024, 2024,
  • [6] Multi-scale Feature Injection for Occluded 3D Human Pose and Shape Estimation
    Shi, Yunhui
    Ge, Yangyang
    Wang, Jin
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4881 - 4886
  • [7] HYRE: Hybrid Regressor for 3D Human Pose and Shape Estimation
    Li, Wenhao
    Liu, Mengyuan
    Liu, Hong
    Ren, Bin
    Li, Xia
    You, Yingxuan
    Sebe, Nicu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 235 - 246
  • [8] TSwinPose: Enhanced monocular 3D human pose estimation with JointFlow
    Li, Muyu
    Hu, Henan
    Xiong, Jingjing
    Zhao, Xudong
    Yan, Hong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [9] DGFormer: Dynamic graph transformer for 3D human pose estimation
    Chen, Zhangmeng
    Dai, Ju
    Bai, Junxuan
    Pan, Junjun
    PATTERN RECOGNITION, 2024, 152
  • [10] MULTI HYBRID EXTRACTOR NETWORK FOR 3D HUMAN POSE ESTIMATION
    Yuan, Zhixiang
    Zhang, Xitie
    Wu, Suping
    Zhang, Boyang
    Peng, Yuxin
    Wang, Bing
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3170 - 3174