Regulating defects in sulfur-doped Bi4O5I2 and constructing S-scheme heterojunctions with g-C3N4 to enhance photocatalytic antibiotic degradation

被引:1
|
作者
Liu, Xinting [1 ]
Chen, Si [2 ]
Tantai, Xujing [1 ]
Dai, Xinyi [1 ,2 ]
Shao, Shengyu [1 ]
Wu, Meixuan [1 ]
Sun, Pengfei [1 ]
Dong, Xiaoping [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Chem & Chem Engn, Key Lab Surface & Interface Sci Polymer Mat Zhejia, Hangzhou 310018, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313000, Peoples R China
关键词
Heterojunction construction; Antibiotic degradation; Reaction mechanism; Toxicity evaluation; TETRACYCLINE; NITROGEN; DECOMPOSITION; PERFORMANCE; ADSORPTION; NANOSHEETS; MECHANISM; BIOI;
D O I
10.1016/j.seppur.2025.132001
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Photocatalysis technology presents a promising green pathway for eliminating antibiotic residues, however, the current performance falls short of practicality. A solvothermal method was employed to successfully prepare sulfur-defect-modified Bi4O5I2/CN S-scheme heterojunction composites in this work, which exhibit remarkable efficacy in the degradation of tetracycline antibiotics under visible light. Compared with Bi4O5I2, the optimized S-Bi4O5I2/CN(10 %) exhibited the best photocatalytic degradation performance of tetracycline hydrochloride (TC, 50 mg/L), achieving a 100 % degradation rate within 10 min. Additionally, it exhibited the broad applicability of the photocatalyst in practical application, effectively degrading various tetracycline antibiotics and maintaining good degradation efficiency across a wide range of pollutant concentrations and pH fluctuations. The catalyst is highly resistant to anion interference and achieves efficient degradation in a fixed-bed reactor, exhibiting high sensitivity. The composition of S-scheme heterojunctions was confirmed through XPS electron transfer, radical quenching experiments, and DFT theory calculations, while the intricate reaction mechanism occurring at the heterojunction interface of S-Bi4O5I2 and g-C3N4 was also elaborated. The degradation path of TC was investigated by using LC-MS and the toxicity assessments and mung bean germination experiments against byproducts also indicate the photocatalytic process can effectively decrease the toxicity and the potential risk of TC to the environment. This work presents a feasible and effective approach to enhance the photocatalytic performance of Bi4O5I2 through heterogeneous structure construction, demonstrating outstanding practical application in eliminating antibiotic residues in the environment.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Activated CdS/ sulfur doped g-C3N4 photocatalyst for dye and antibiotic degradation: Experimental and DFT verification of S-scheme heterojunction
    Duan, Xu
    Yang, Jian
    Zhu, Jiaqing
    Li, Hongbin
    Fang, Yujie
    Liu, Runxue
    Yang, Chen
    Liu, Weizao
    Ding, Chunlian
    Liu, Qingcai
    Li, Jiangling
    Ren, Shan
    ENVIRONMENTAL RESEARCH, 2025, 266
  • [2] Construction of dual S-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst with enhanced visible-light photocatalytic degradation for tetracycline
    Chen, Zi-Jun
    Guo, Hai
    Liu, Hui-Yun
    Niu, Cheng-Gang
    Huang, Da-Wei
    Yang, Ya-Ya
    Liang, Chao
    Li, Lu
    Li, Jin-Cheng
    CHEMICAL ENGINEERING JOURNAL, 2022, 438
  • [3] Review of the Versatility and Application Potentials of g-C3N4-Based S-Scheme Heterojunctions in Photocatalytic Antibiotic Degradation
    Huang, Bin
    Xu, Kaidi
    Zhao, Yu
    Li, Bohao
    Jiang, Siyuan
    Liu, Yaxin
    Huang, Shengnan
    Yang, Qingyuan
    Gao, Tianxiang
    Xie, Simeng
    Chen, Huangqin
    Li, Yuesheng
    MOLECULES, 2025, 30 (06):
  • [4] Sulfur-Doped g-C3N4 Heterojunctions for Efficient Visible Light Degradation of Methylene Blue
    Perez-Torres, Andres F.
    Hernandez-Barreto, Diego F.
    Bernal, Valentina
    Giraldo, Liliana
    Moreno-Pirajan, Juan Carlos
    da Silva, Edjan Alves
    Alves, Maria do Carmo Martins
    Morais, Jonder
    Hernandez, Yenny
    Cortes, Maria T.
    Macias, Mario A.
    ACS OMEGA, 2023, 8 (50): : 47821 - 47834
  • [5] Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution
    Jiang, Jizhou
    Xiong, Zhiguo
    Wang, Haitao
    Liao, Guodong
    Bai, Saishuai
    Zou, Jing
    Wu, Pingxiu
    Zhang, Peng
    Li, Xin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 118 : 15 - 24
  • [6] Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation
    Wang, Juan
    Wang, Guohong
    Cheng, Bei
    Yu, Jiaguo
    Fan, Jiajie
    CHINESE JOURNAL OF CATALYSIS, 2021, 42 (01) : 56 - 68
  • [7] S-Scheme α-Fe2O3/g-C3N4 Nanocomposites as Heterojunction Photocatalysts for Antibiotic Degradation
    Viet Van Pham
    Thao Kim Truong
    Le Viet Hai
    Ha Phan Phuong La
    Hoang Thai Nguyen
    Vinh Quang Lam
    Hien Duy Tong
    Thang Quoc Nguyen
    Sabbah, Amr
    Chen, Kuei-Hsien
    You, Sheng-Jie
    Thi Minh Cao
    ACS APPLIED NANO MATERIALS, 2022, 5 (03) : 4506 - 4514
  • [8] Designing g-C3N4/NiFe2O4 S-scheme heterojunctions for efficient photocatalytic degradation of Rhodamine B and tetracycline hydrochloride
    Mishra, Subhasish
    Acharya, Lopamudra
    Sharmila, S.
    Sanjay, Kali
    Acharya, Rashmi
    APPLIED SURFACE SCIENCE ADVANCES, 2024, 24
  • [9] Constructing g-C3N4/SnO2 S-scheme heterojunctions for efficient photocatalytic NO removal and low NO2 generation
    Pham Van Viet
    Hoang-Phuong Nguyen
    Hong-Huy Tran
    Dai-Phat Bui
    Le Viet Hai
    Minh-Thuan Pham
    Sheng-Jie You
    Cao Minh Thi
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2021, 6 (04): : 551 - 559
  • [10] Construction of oxygen-doped g-C3N4/BiOCl (S-scheme) heterojunction: Efficient degradation of tetracycline in wastewater
    Wei, Yuan
    Liu, Yu -Bing
    Liu, Chao
    Li, Xin
    Zhao, Guang-Hong
    Liu, Rong-Hui
    Wang, Hong -Yu
    Jiang, Yan-Yan
    Zhang, Yu -Lan
    Gao, Yu -Hui
    Shi, Gao-Feng
    Wang, Guo-Ying
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (05):