Modelling Extreme Rainfall using Extended Generalized Extreme Value Distribution

被引:0
|
作者
Deetae, N. [1 ]
Khamrot, P. [2 ]
Jampachaisri, K. [3 ]
机构
[1] Pibulsongkram Rajabhat Univ, Fac Sci & Technol, Dept Stat, Phitsanulok, Thailand
[2] Rajamangala Univ Technol Lanna, Fac Sci & Agr Technol, Dept Math, Phitsanulok, Thailand
[3] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok, Thailand
关键词
extreme value theory; generalized extreme value distribution; kumaraswamy generalized extreme value distribution; return level; maximum likelihood estimation; rainfall;
D O I
10.28924/2291-8639-23-2025-73
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study assesses the performance of extended generalized extreme value (GEV) distribution based on Kumaraswamy generalized extreme value (KumGEV) distribution using the maximum likelihood estimates on extreme rainfall data obtained from a weather station in Phitsanulok province, a total of 408 months during January 1987 to December 2021. The findings indicate that the KumGEV distribution provides a better fit than the traditional GEV distribution, with estimated parameters mu = 41.4966 (SE = 0.6015), sigma = 8.9467 (SE = 0.0797), xi = -0.0502 (SE = 0.0308), a = 0.0310 (SE = 0.0060), and b = 0.2738 (SE = 0.0155). Additionally, the analysis of return levels derived from both GEV and KumGEV distributions shows an upward trend over return periods of 10, 20, 50, and 100 years, highlighting significant changes in rainfall patterns over time.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Bayesian Approach to Extreme Value Estimation in Modelling Rainfall Data
    Musakkal, Nur Farhanah Kahal
    Na, Chin Su
    Gabda, Darmesah
    4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019), 2019, 2138
  • [32] Research on extreme minimum and maximum temperatures based on generalized extreme value distribution
    Duan Chunfeng
    Miao Qilong
    Cao Wen
    Xu Shijing
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 1: ADVANCES ON SPACE WEATHER, METEOROLOGY AND APPLIED PHYSICS, 2010, : 73 - 78
  • [33] Modeling of maximum precipitation using maximal generalized extreme value distribution
    Ashoori, Farnoosh
    Ebrahimpour, Malihe
    Bozorgnia, Abolghasem
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (06) : 3025 - 3033
  • [34] Stochastic modeling of flood peaks using the generalized extreme value distribution
    Morrison, JE
    Smith, JA
    WATER RESOURCES RESEARCH, 2002, 38 (12) : 41 - 1
  • [35] Bayesian rainfall frequency analysis with extreme value using the informative prior distribution
    Eun-Sung Chung
    Sang Ug Kim
    KSCE Journal of Civil Engineering, 2013, 17 : 1502 - 1514
  • [36] Bayesian rainfall frequency analysis with extreme value using the informative prior distribution
    Chung, Eun-Sung
    Kim, Sang Ug
    KSCE JOURNAL OF CIVIL ENGINEERING, 2013, 17 (06) : 1502 - 1514
  • [37] ESTIMATION FOR A 4 PARAMETER GENERALIZED EXTREME VALUE DISTRIBUTION
    SCARF, PA
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (08) : 2185 - 2201
  • [38] Adaptive Novelty Detection with Generalized Extreme Value Distribution
    Vrba, Jan
    2018 23RD INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS (AE), 2018, : 169 - 172
  • [39] Estimating quantiles of extreme wind speed using generalized extreme value distribution fitted based on the order statistics
    Liu, Y. X.
    Hong, H. P.
    WIND AND STRUCTURES, 2022, 34 (06) : 469 - 482
  • [40] Extreme value modelling of the South African Industrial Index (J520) returns using the generalised extreme value distribution
    Jakata, Owen
    Chikobvu, Delson
    INTERNATIONAL JOURNAL OF APPLIED MANAGEMENT SCIENCE, 2022, 14 (04) : 299 - 315