Modelling Extreme Rainfall using Extended Generalized Extreme Value Distribution

被引:0
|
作者
Deetae, N. [1 ]
Khamrot, P. [2 ]
Jampachaisri, K. [3 ]
机构
[1] Pibulsongkram Rajabhat Univ, Fac Sci & Technol, Dept Stat, Phitsanulok, Thailand
[2] Rajamangala Univ Technol Lanna, Fac Sci & Agr Technol, Dept Math, Phitsanulok, Thailand
[3] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok, Thailand
关键词
extreme value theory; generalized extreme value distribution; kumaraswamy generalized extreme value distribution; return level; maximum likelihood estimation; rainfall;
D O I
10.28924/2291-8639-23-2025-73
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study assesses the performance of extended generalized extreme value (GEV) distribution based on Kumaraswamy generalized extreme value (KumGEV) distribution using the maximum likelihood estimates on extreme rainfall data obtained from a weather station in Phitsanulok province, a total of 408 months during January 1987 to December 2021. The findings indicate that the KumGEV distribution provides a better fit than the traditional GEV distribution, with estimated parameters mu = 41.4966 (SE = 0.6015), sigma = 8.9467 (SE = 0.0797), xi = -0.0502 (SE = 0.0308), a = 0.0310 (SE = 0.0060), and b = 0.2738 (SE = 0.0155). Additionally, the analysis of return levels derived from both GEV and KumGEV distributions shows an upward trend over return periods of 10, 20, 50, and 100 years, highlighting significant changes in rainfall patterns over time.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Research on Extreme Value Distribution of Cutting Force in CNC Lathe Based on Generalized Extreme Value Distribution
    Wang, Shengxu
    Li, Guofa
    Yang, Haiji
    He, Jialong
    2019 4TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY (ICSRS 2019), 2019, : 198 - 202
  • [22] ON THE q-GENERALIZED EXTREME VALUE DISTRIBUTION
    Provost, Serge B.
    Saboor, Abdus
    Cordeiro, Gauss M.
    Mansoor, Muhammad
    REVSTAT-STATISTICAL JOURNAL, 2018, 16 (01) : 45 - 70
  • [23] REFERENCE PRIORS FOR THE GENERALIZED EXTREME VALUE DISTRIBUTION
    Zhang, Likun
    Shaby, Benjamin A.
    STATISTICA SINICA, 2023, 33 (03) : 2185 - 2208
  • [24] Extending the blended generalized extreme value distribution
    Nir Y. Krakauer
    Discover Civil Engineering, 1 (1):
  • [25] THE EXTREME VALUE DISTRIBUTION OF RAINFALL DATA AT BELGRADE, YUGOSLAVIA
    MIROSLAVA, U
    ATMOSFERA, 1992, 5 (01): : 47 - 56
  • [26] A COMPARISON OF 3 GENERALIZED EXTREME-VALUE RAINFALL STUDIES
    HERSHFIELD, DM
    ARCHIVES FOR METEOROLOGY GEOPHYSICS AND BIOCLIMATOLOGY SERIES B-THEORETICAL AND APPLIED CLIMATOLOGY, 1983, 33 (03): : 251 - 260
  • [27] Modelling summer extreme rainfall over the Korean peninsula using Wakeby distribution
    Park, JS
    Jung, HS
    Kim, RS
    Oh, JH
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2001, 21 (11) : 1371 - 1384
  • [28] Modelling Korean extreme rainfall using a Kappa distribution and maximum likelihood estimate
    J.-S. Park
    H.-S. Jung
    Theoretical and Applied Climatology, 2002, 72 : 55 - 64
  • [29] Modelling Korean extreme rainfall using a Kappa distribution and maximum likelihood estimate
    Park, JS
    Jung, HS
    THEORETICAL AND APPLIED CLIMATOLOGY, 2002, 72 (1-2) : 55 - 64
  • [30] Modelling maximum daily yearly rainfall in northern Algeria using generalized extreme value distributions from 1936 to 2009
    Boudrissa, Naima
    Cheraitia, Hassen
    Halimi, Lotfi
    METEOROLOGICAL APPLICATIONS, 2017, 24 (01) : 114 - 119