Future directions in myelodysplastic syndromes/neoplasms and acute myeloid leukaemia classification: from blast counts to biology

被引:0
作者
Della Porta, Matteo G. [1 ,2 ]
Bewersdorf, Jan Philipp [3 ,4 ]
Wang, Yu-Hung [5 ,6 ]
Hasserjian, Robert P. [7 ]
机构
[1] IRCCS Humanitas Clin & Res Ctr, Comprehens Canc Ctr, Milan, Italy
[2] Humanitas Univ, Milan, Italy
[3] Yale Univ, Sect Hematol, Dept Internal Med, New Haven, CT 06520 USA
[4] Yale Canc Ctr, New Haven, CT USA
[5] Univ Manchester, Div Canc Sci, Epigenet Haematopoiesis Lab, Manchester, England
[6] Natl Taiwan Univ Hosp, Div Hematol, Taipei, Taiwan
[7] Harvard Med Sch, Dept Pathol, Massachusetts Gen Hosp, Boston, MA USA
关键词
acute myeloid leukaemia; classification; cytogenetics; genetics; myelodysplastic syndrome; next-generation sequencing; HEALTH-ORGANIZATION CLASSIFICATION; INTERMEDIATE-RISK CYTOGENETICS; DE-NOVO; MULTILINEAGE DYSPLASIA; CLONAL HEMATOPOIESIS; TP53; MUTATIONS; SCORING SYSTEM; SYNDROMES MDS; DIAGNOSIS; PROGNOSIS;
D O I
10.1111/his.15353
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi-allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut-offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine-learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher-level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.
引用
收藏
页码:158 / 170
页数:13
相关论文
共 78 条
  • [21] Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN
    Doehner, Hartmut
    Wei, Andrew H.
    Appelbaum, Frederick R.
    Craddock, Charles
    DiNardo, Courtney D.
    Dombret, Herve
    Ebert, Benjamin L.
    Fenaux, Pierre
    Godley, Lucy A.
    Hasserjian, Robert P.
    Larson, Richard A.
    Levine, Ross L.
    Miyazaki, Yasushi
    Niederwieser, Dietger
    Ossenkoppele, Gert
    Roellig, Christoph
    Sierra, Jorge
    Stein, Eytan M.
    Tallman, Martin S.
    Tien, Hwei-Fang
    Wang, Jianxiang
    Wierzbowska, Agnieszka
    Lowenberg, Bob
    [J]. BLOOD, 2022, 140 (12) : 1345 - 1377
  • [22] Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia
    Duncavage, Eric J.
    Bagg, Adam
    Hasserjian, Robert P.
    DiNardo, Courtney D.
    Godley, Lucy A.
    Iacobucci, Ilaria
    Jaiswal, Siddhartha
    Malcovati, Luca
    Vannucchi, Alessandro M.
    Patel, Keyur P.
    Arber, Daniel A.
    Arcila, Maria E.
    Bejar, Rafael
    Berliner, Nancy
    Borowitz, Michael J.
    Branford, Susan
    Brown, Anna L.
    Cargo, Catherine A.
    Dohner, Hartmut
    Falini, Brunangelo
    Garcia-Manero, Guillermo
    Haferlach, Torsten
    Hellstrom-Lindberg, Eva
    Kim, Annette S.
    Klco, Jeffery M.
    Komrokji, Rami
    Loh, Mignon Lee-Cheun
    Loghavi, Sanam
    Mullighan, Charles G.
    Ogawa, Seishi
    Orazi, Attilio
    Papaemmanuil, Elli
    Reiter, Andreas
    Ross, David M.
    Savona, Michael
    Shimamura, Akiko
    Skoda, Radek C.
    Sole, Francesc
    Stone, Richard M.
    Tefferi, Ayalew
    Walter, Matthew J.
    Wu, David
    Ebert, Benjamin L.
    Cazzola, Mario
    [J]. BLOOD, 2022, 140 (21) : 2228 - 2247
  • [23] Distinguishing AML from MDS: a fixed blast percentage may no longer be optimal
    Estey, Elihu
    Hasserjian, Robert P.
    Doehner, Hartmut
    [J]. BLOOD, 2022, 139 (03) : 323 - 332
  • [24] Comparison of the International Consensus and 5th WHO edition classifications of adult myelodysplastic syndromes and acute myeloid leukemia
    Falini, Brunangelo
    Martelli, Maria Paola
    [J]. AMERICAN JOURNAL OF HEMATOLOGY, 2023, 98 (03) : 481 - 492
  • [25] Pure erythroid leukemia is characterized by biallelic TP53 inactivation and abnormal p53 expression patterns in de novo and secondary cases
    Fang, Hong
    Wang, Sa A.
    Khoury, Joseph D.
    El Hussein, Siba
    Kim, Do Hwan
    Tashakori, Mehrnoosh
    Tang, Zhenya
    Li, Shaoying
    Hu, Zhihong
    Jelloul, Fatima Zahra
    Patel, Keyur P.
    McDonnell, Timothy J.
    Kadia, Tapan
    Medeiros, L. Jeffrey
    Wang, Wei
    [J]. HAEMATOLOGICA, 2022, 107 (09) : 2232 - 2237
  • [26] Inter-observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification
    Font, P.
    Loscertales, J.
    Benavente, C.
    Bermejo, A.
    Callejas, M.
    Garcia-Alonso, L.
    Garcia-Marcilla, A.
    Gil, S.
    Lopez-Rubio, M.
    Martin, E.
    Munoz, C.
    Ricard, P.
    Soto, C.
    Balsalobre, P.
    Villegas, A.
    [J]. ANNALS OF HEMATOLOGY, 2013, 92 (01) : 19 - 24
  • [27] AML, NOS and AML-MRC as defined by multilineage dysplasia share a common mutation pattern which is distinct from AML-MRC as defined by MDS-related cytogenetics
    Fuhrmann, Irene
    Lenk, Miriam
    Haferlach, Torsten
    Stengel, Anna
    Hutter, Stephan
    Baer, Constance
    Meggendorfer, Manja
    Kern, Wolfgang
    Haferlach, Claudia
    [J]. LEUKEMIA, 2022, 36 (07) : 1939 - 1942
  • [28] Distinct Mutation Landscapes Between Acute Myeloid Leukemia With Myelodysplasia-Related Changes and De Novo Acute Myeloid Leukemia
    Gao, Yajuan
    Jia, Mingnan
    Mao, Yueying
    Cai, Hao
    Jiang, Xianyong
    Cao, Xinxin
    Zhou, Daobin
    Li, Jian
    [J]. AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2022, 157 (05) : 691 - 700
  • [29] Validation of the WHO proposals for a new classification of primary myelodysplastic syndromes: a retrospective analysis of 1600 patients
    Germing, U
    Gattermann, N
    Strupp, C
    Aivado, M
    Aul, C
    [J]. LEUKEMIA RESEARCH, 2000, 24 (12) : 983 - 992
  • [30] Epigenetic Identity in AML Depends on Disruption of Nonpromoter Regulatory Elements and Is Affected by Antagonistic Effects of Mutations in Epigenetic Modifiers
    Glass, Jacob L.
    Hassane, Duane
    Wouters, Bas J.
    Kunimoto, Hiroyoshi
    Avellino, Roberto
    Garrett-Bakelman, Francine E.
    Guryanova, Olga A.
    Bowman, Robert
    Redlich, Shira
    Intlekofer, Andrew M.
    Meydan, Cem
    Qin, Tingting
    Fall, Mame
    Alonso, Alicia
    Guzman, Monica L.
    Valk, Peter J. M.
    Thompson, Craig B.
    Levine, Ross
    Elemento, Olivier
    Delwel, Ruud
    Melnick, Ari
    Figueroa, Maria E.
    [J]. CANCER DISCOVERY, 2017, 7 (08) : 868 - 883